

U. S. COAST & GEODETIC SURVEY LIBRARY AND ARCHIVES

APR 1 1935

Acc. No.

Form 504 Rev. Dec. 1933

DEPARTMENT OF COMMERCE

U.S. COAST AND GEODETIC SURVEY
R. S. PATTON, DIRECTOR

DESCRIPTIVE REPORT

Topographic | Sheet No. B

Hydrographic Graphic Control Sheet

State Virginia

Wachapreague Inlet & Vicinity

Sheroline of Metomkin Bay Metomkin Little Machipongo In 16t

193 4

CHIEF OF PARTY

H. A. Seran

DEPARTMENT OF COMMERCE U. S. COAST AND GEODETIC SURVEY

TOPOGRAPHIC TITLE SHEET

Graphic Control Sheet

The Topographic Sheet should be accompanied by this form, filled in as completely as possible, when the sheet is forwarded to the Office.

Field No	2		
•			_
REGISTER	NO.	491	5

Wachapreague Inlet & Vicinity
General locality Bastorn Shore - Accomac County Metomkin Bay to Little Machipongo Inlet
Locality Fastern_shoreline_af Hetomkin, Coder and Parramore Islands
Scale 1-20,000 Date of survey June and July , 19 34
Vessel Sub-party Ship OCEANOGRAPHER
Chief of party H. A. Seran
Surveyed by R.A.Earle and J. E. Waugh
Inked by R. A. Earle and F.J.Kish
Heights in feet aboveto ground to tops of trees
Contour, Approximate contour, Form line intervalfeet
Instructions dated April 27 , 19 33
Exception: Shoreline to be obtained from air photographs. Remarks: This sheet was executed only for the purpose of locating
signals for centrol of the hydrographic survey.

DESCRIPTIVE REPORT

to accompany

TOPOGRAPHIC SHEET - B, "G.C.S."

Sub-party Ship OCEANOGRAPHER H.A. Seran, Comdg. Vicinity: Metomkin to Parramore I. Scale 1 - 20,000.

PROJECT - H. T.142

INSTRUCTIONS

Instructions were dated April 27, 1933.

PURPOSE OF SURVEY

The topography on this sheet was executed only to locate signals for the control of the hydrographic survey. The signals located on this sheet lie along the outer coast of Metomkin, Cedar and Parramore Islands.

CONTROL AND SURVEY METHODS

This survey was controlled by triangulation executed during previous seasons. The position of the tall hydrographic signal "Jim" was computed from triangulation cuts, however, as it was built on the beach, it was unmarked and is unrecoverable, therefore the position is submitted with this report and was considered of fourth rather than third order accuracy.

Signals to the southern end of Cedar Island were located by Lieutenant R.A. Earle, all signals to the south and west of this point were located by Ensign J. E. Waugh.

Along the beach of Parramore Island it was necessary to run traverses between definitely located points. These traverses all checked within the allowable limits and were adjusted in accordance with the "Topographic Manual". On all other sections of the sheet, signals were located by three or more topographic cuts and many of the positions were supplemented by short traverses between accurately located points.

"LANDMARKS FOR CHARTS" AND "DESCRIPTION OF RECOVERABLE TOPOGRAPHIC SIGNALS"

"Landmarks for Charts" and "Descriptions of Recoverable Topographic Signals" for objects located in this area, are attached herewith. Along these beaches nearly all objects which could be classed as "Recoverable Topographic Stations" have been previously cut in by triangulation.

Respectfully submitted:

R.A.Earle, Lt.(j.g.) C&GS

Approved and forwarded:

H. A.Seran, Comdr. C&GS

Commanding Ship DYFANOGRAPHER.

Form 567 Ed. Dec., 1929

DEPARTMENT OF COMMERCE

U. S. COAST AND GEODETIC SURVEY

LANDMARKS FOR CHARTS

	<u>No</u>					Norfolk, Virginia.							
	~	_			_			<u></u> .		, 193			
The following determinescription given below, an				ıt, can	n be		etinguish Car						
						H.A.S	eran	T	Chief o	f Party.			
•		P			TION		1	METHOD	CHA	DTG			
DESCRIPTION		LAT	TITUDE			ITUDE	DATUM	METHOD OF DETER- MINATION	AFFE(TED			
	°	<u>'</u>	D. M. METERS	°		D. P. METERS	-	Manager	163.0	_ . ———			
_		P. C	27.00			1007	374 300	Topogra	Charts	1109-12			
Rave	37	<u> 35</u>	1100	75_	3 6	1061	NA-192	7					
	TA-1	ds t	o Naviga	tion!	n			lopog ra p.	nic				
Beacon, Fl.white	37		1320	75		1172	NA-1927	cuts	Charts	1109-12			
				<u> </u> 		İ							
				ļ		-							
						1							
									ļ				
					, .								
				ļ									
			-			<u> </u>			1				
				1					<u> </u>				
		•						1		•			
						<u> </u>							
			İ						-				
			 	 			<u> </u>	ļ					
						ļ	ļ						
							}						
	-	_					_		-				
									<u> </u>				
	-												

U. S. GOVERNMENT PRINTING OFFICE: 1981 chart.

A list of objects which are of sufficient prominence for use on the charts, together with a description of the same, must be furnished in a special report on this form, and a copy of such report must be attached by the Chief of Party to his descriptive report. The selection, determination, and description of these points are of primary importance.

The description of each object should be short, but such as will identify it; for example, standpipe, water tower, church spire, tank, tall stack, red chimney, radio mast, etc. Generally, flagstaffs and like objects are not sufficiently permanent to chart

GEOGRAPHIC POSITIONS

Accession No. of Computation:_

North American - 1927

Datum____

ocality Mocke presence Inlet and Vicinity

WENT OF COMMERCE STAND GEODTIC SURVEY Form 28 B

35345 FEET 85.591 29093 Fourth - Order State Virginia DISTANCE METERS 10773.3 50376 88677 LOGARITHM (METERS) 3.702.225 4032.347 3.947810 Haulover. 2, 1909.33 TO STATION 235 30 535 Sand, 1933 Brand, 1933 37 58.7 32.0 BACK AZIMUTH 291 55 34 339 139 56 33.9 AZIMUTH 111 39 Seconds in Meters 753.7 677.5 37 33 2444 75 36 27.60 LATITUDE AND LONGITUDE 0.00 End Parramace 14) 1934 STATION

DEPARTMENT OF COMMERCE U. S. COAST AND GEODETIC SURVEY FORM 24A Rev. Oct., 1932

4915 LIST OF DIRECTIONS

touth Order
location of
O JIM

Station Brand - 1933	State Virginia	O JIM
Chief of party H. A. Seran	Date 7/25/34	Computed by JEW.
•	Instrument 7" Berger No. 255	Checked by M. B.M.

OBSERVED STATION	Observed direction .	Eccentric reduc- tion	Sea level reduction*	Corrected direction with zero initial	Adjusted direction*
	· / //	, u		o , , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , , ,
Haulover No.2-1909	0 00 00.00	· -		0 00 00.00	
O Jim - [Tall Signal]	123-23-520 V				
U UIM - Liui Jignai	7,3, 20,0				
			- -		
ها بالمستقل المراب المراب الم				}	
			. - ·		
		<u></u>		- -	·
والمراجع المتناء المتناء المراجع المتناء المواجعين					
<u></u>		·	· · — — -··		· ·
= · · ·-· · · · · · · · · · · · · · ·					
					-
					<u>.</u>
	· · ·		 		-
		}	}	-	
			·		
· 		<u></u>			
		ļ			

*These columns are for office use and should be left blank in the field.

Chief of party: C. V. H.

Observer: C. V. H.

State: Maryland

Date: 1917

Instrument: No. 168

Computed by: O. P. S.

Checked by: W. F. R.

OBSERVED STATION	Observed	direction		centric luction	Sea level reduction	Corre		irection with initial	Adji dire	usted ction
Chevy Tank west of \triangle Duice Ken (center), 3.469 meters Forest Glen standpipe Home Bureau of Standards, wireless pole Reno Reference mark, 16.32 m Ken To Home 70 55	29 176 313 326 352 357 358	00 00.00 03 37.0 42 24 53.0 31 30.21 17 20.8 28 48.63 81 20	, -1 +3 + +	7.31 09.8 01.2 31.93 5.7 1.16	ď	° 0 29 313 326 352 357	, 00 02 28 32 17 28	00.00 34.5 01.5 09.45 33.8 54.78	,	•

This form, with the first three and fifth columns properly filled out and checked, must be furnished by field parties. To be acceptable it must contain every direction observed at the station.

It should be used for observations with both repeating and direction theodolites.

The directions at only one station should be placed on a page.

If a repeating theodolite is used, do not abstract the angles in tertiary triangulation. The local adjustment corrections (to close horizon only) are to be written in the Horizontal Angle Record, and the List of Directions is to be made from that record directly.

Choose as an initial for Form 24A some station involved in the local adjustment, and preferably one which has been used as an initial for a round of directions on objects not in the main scheme. Use but one initial at a station. Call the direction of the initial 0° 00′ 00.″ 00, and by applying the corrected angles to this, fill in opposite each station its direction reckoned clockwise around the whole circumference regardless of the direction of graduation of the instrument. The clockwise reckoning is necessary for uniformity and to make the directions comparable with azimuths.

If a station has been occupied eccentrically, reduce to the center and enter in this form, in ink, the resulting corrections to the observed directions in the column provided for them. If an eccentric reduction is necessary, but not made in the field, leave the column blank. If the station was occupied centrally, and no eccentric reduction is required, put dashes in the column to show that no corrections are necessary.

Directions in the main scheme should be entered to hundredths of seconds in first-order triangulation; otherwise to tenths only. Points observed upon but once, direct and reverse, should be carried to tenths in first-order and second-order triangulation, and to even seconds only in third-order triangulation. In general, but two uncertain figures should be given.

It is recommended that the following simple plan of observing be used with a repeating instrument: Measure each single angle in the scheme at each station and the outside angle necessary to close the horizon. Measure no sum angles. Follow each measurement of every angle immediately by a measurement of its explement. Six repetitions are to constitute a measurement. The local adjustment will consist simply of the distribution of the error of closure of the horizon.

DEPARTMENT OF COMMERCE U. S. COAST AND GEODETIC SURVEY Form 24A Rev. Oct., 1932

LIST OF DIRECTIONS

Station Wachapreague-No. 4-1934	State Virginia	
Chief of party H.A. Seran	Date 7/24/34 - 8/8/34	Computed by J.E.W.
Observer M.B. Moore and J. E. Waugh	Instrument 7" Berger - No. 255	Checked by M. B. M.

ODGEDVET COLUMN	Ohmana A Alexander	Eccentric reduc-	Sea level	Corrected direction with	Adjusted
OBSERVED STATION	Observed direction	tion	reduction*	Corrected direction with zero initial	Adjusted direction*
	0 / "	7 #	•	0 / #	,,
Haulover-No.2-1909	0 00 00.00	•		0 00 00.00	
	•	+			
O Jim [Tall Signal]	234-21-15.4 V	· 			
					· · · · · · · · · ·
S.E. Corner of boat house				· •-•··	
Wachapreague Coast Guard	5				
Wachapie ague Loast Guard distance 10.75m	2 8-38- 22.5				<u>-</u>
Black Rock Beacon	326-08-11.71				
Finney Creek Beacon	359-10-16.5				
				•- •	
·····					
					-
·· · · · - · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·
					· · · · · · · · · · · · · · · · · · ·
				* * * * * * * * * * * * * * * * * * *	
			· - ·	·	· · - - · •
				-	
				 -	· · · · · · · · · · · · · · · · · · ·
					· -
					
	·-··	·• -·			
· · · · · · · · · · · · · · · · · · ·				• •===.	
······································					· · · · · · · · · · · · · · · · · · ·
		· · · ·	+		
					·
· ···· · · · · · · · · · ·		· · · · · · ·			
				- 	
		l			_

Chief of party: C. V. H.

Observer: C. V. H.

State: Maryland

Date: 1917

Instrument: No. 168

Computed by: O. P. S.

Checked by: W. F. R.

OBSERVED STATION	Observed direction		Eccentric reduction		Sea level reduction	Corrected direction with zero initial			Adjusted direction		
Chevy Tank west of \(\Delta \) Dulco Ken (center), 3.469 meters Forest Glen standpipe Home Bureau of Standards, wireless pole. Reno Reference mark, 16.32 m Ker To Home	0 29 176 313 326 352 357 358 <i>eccen</i>	00 03 42 24 31 17 28 31	30.21 20.8 48.63 20	, -1 +3 + -	7.31 09.8 01.2 31.93 5.7 1.16		0 29 313 326 352 357	, 00 02 28 32 17 28	00.00 34.5 01.5 09.45 33.8 54.78	,	,

This form, with the first three and fifth columns properly filled out and checked, must be furnished by field parties. To be acceptable it must contain every direction observed at the station.

It should be used for observations with both repeating and direction theodolites.

The directions at only one station should be placed on a page.

If a repeating theodolite is used, do not abstract the angles in tertiary triangulation. The local adjustment corrections (to close horizon only) are to be written in the Horizontal Angle Record, and the List of Directions is to be made from that record directly.

Choose as an initial for Form 24A some station involved in the local adjustment, and preferably one which has been used as an initial for a round of directions on objects not in the main scheme. Use but one initial at a station. Call the direction of the initial 0° 00′ 00.″ 00, and by applying the corrected angles to this, fill in opposite each station its direction reckoned *clockwise* around the whole circumference regardless of the direction of graduation of the instrument. The clockwise reckoning is necessary for uniformity and to make the directions comparable with azimuths.

If a station has been occupied eccentrically, reduce to the center and enter in this form, in ink, the resulting corrections to the observed directions in the column provided for them. If an eccentric reduction is necessary, but not made in the field, leave the column blank. If the station was occupied centrally, and no eccentric reduction is required, put dashes in the column to show that no corrections are necessary.

Directions in the main scheme should be entered to hundredths of seconds in first-order triangulation; otherwise to tenths only. Points observed upon but once, direct and reverse, should be carried to tenths in first-order and second-order triangulation, and to even seconds only in third-order triangulation. In general, but two uncertain figures should be given.

It is recommended that the following simple plan of observing be used with a repeating instrument: Measure each single angle in the scheme at each station and the outside angle necessary to close the horizon. Measure no sum angles. Follow each measurement of every angle immediately by a measurement of its explement. Six repetitions are to constitute a measurement. The local adjustment will consist simply of the distribution of the error of closure of the horizon.

DEPARTMENT OF COMMERCE U. S. COAST AND GEODETIC SURVEY FORM 24A Rev. Oct., 1932

LIST OF DIRECTIONS

Station Haulover #2-1909 Chief of party H.A. Seran				 Computed by	J. E. W.
Observer M. B. Moore		7" Berger			
OBSERVED STATION	Observed direction	Eccentric reduc- tion	Sea level reduction*	Corrected direction with zero initial	Adjusted direction
Wachapreague #4-1934	0 00 00.00			0 00 00.00	, ,
O Jim [Tall signal]	21-10-12"9_v				
			- · · · - · · · · · · · · · · · · · · ·		
			-		
				<u></u>	
				· · · · · · · · · · · · · · · · · · ·	
				· · · · · · · · · · · · · · · · · · ·	
			·· -		
	•				
				· · · · · · · · · · · · · · · · · · ·	~···
	· · · · · · · · · · · · · · · · · · ·				
			- · - · ·		· - · · · · · · · · · · · · · · · · · ·
*These columns are for office use and should be	left blank in the field				

Chief of party: C. V. H.

Observer: C. V. H.

State: Maryland

Date: 1917

Instrument: No. 168

Computed by: O. P. S.

Checked by: W. F. R.

OBSERVED STATION	Observed direction		Observed direction Eccentric Ses level reduction		Corre	Adjusted direction					
Chevy	0 29 176 313 326 352 357 358 1 eccen	00 03 42 24 31 17 28 31	53.0 30.21 20.8 48.63 20	, -1 +3 + +	7.31 09.8 01.2 31.93 5.7 1.16	,,,	0 29 313 326 352 357	, 00 02 28 32 17 28	00.00 34.5 01.5 09.45 33.8 54.78	,	*

This form, with the first three and fifth columns properly filled out and checked, must be furnished by field parties. To be acceptable it must contain every direction observed at the station.

It should be used for observations with both repeating and direction theodolites.

The directions at only one station should be placed on a page.

If a repeating theodolite is used, do not abstract the angles in tertiary triangulation. The local adjustment corrections (to close horizon only) are to be written in the Horizontal Angle Record, and the List of Directions is to be made from that record directly.

Choose as an initial for Form 24A some station involved in the local adjustment, and preferably one which has been used as an initial for a round of directions on objects not in the main scheme. Use but one initial at a station. Call the direction of the initial 0° 00′ 00.″ 00, and by applying the corrected angles to this, fill in opposite each station its direction reckoned clockwise around the whole circumference regardless of the direction of graduation of the instrument. The clockwise reckoning is necessary for uniformity and to make the directions comparable with azimuths.

If a station has been occupied eccentrically, reduce to the center and enter in this form, in ink, the resulting corrections to the observed directions in the column provided for them. If an eccentric reduction is necessary, but not made in the field, leave the column blank. If the station was occupied centrally, and no eccentric reduction is required, put dashes in the column to show that no corrections are necessary.

Directions in the main scheme should be entered to hundredths of seconds in first-order triangulation; otherwise to tenths only. Points observed upon but once, direct and reverse, should be carried to tenths in first-order and second-order triangulation, and to even seconds only in third-order triangulation. In general, but two uncertain figures should be given.

It is recommended that the following simple plan of observing be used with a repeating instrument: Measure each single angle in the scheme at each station and the outside angle necessary to close the horizon. Measure no sum angles. Follow each measurement of every angle immediately by a measurement of its explement. Six repetitions are to constitute a measurement. The local adjustment will consist simply of the distribution of the error of closure of the horizon.

DEPARTMENT OF COMMERCE U. 5. COAST AND GEODETIC SURVEY FORM 24A Rev. Oct., 1932

LIST OF DIRECTIONS

Station Sand - 1933	State Virginia	
Chief of party H.A.Seron	Date 7/28/34	Computed by J.E.W.
Observer J. E. Waugh	Instrument 7" Berger No. 255	Checked by M. B. M.

		Eccentric reduc-	See lawel	Corrected direction with	Adinetad
OBSERVED STATION	Observed direction	Eccentric reduc- tion	Sea level reduction*	Corrected direction with zero initial	Adjusted direction*
	0 / //	, ,	8	0 , ,	, ""
Hog Island Light	0 00 00.00			0 00 00.00	
	· · - 	<u>-</u>			
O Jim [Tall signal]	238-49-56.9 V			· · ·- ·	· · · • · . •
			· -· ·		
				- ·	··
				· 	
		·			·
		-		* ·	
					<u>-</u>
			· · · · · · · · · · · · · · · · · · ·		-
				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
				· — — · · ·	·• •
				• • • · · · · · · · · · · · · · · · · ·	
				<u> </u>	
		_			
					
				· · · · · · · · · · · · · · · · · · ·	·
			. 	· · · · · · · · · · · · · · · · · · ·	
or company removes a management	····		+	· · · · · · · · · · · · · · · · · · ·	
			• • • • •		
				· ·	• • • • • •
· · · · · · · · · · · · · · · · · · ·					
-			•		
				·	
	-···· - · · -		• • • • •		

State: Maryland

Chief of party: C. V. H.

Date: 1917

Computed by: O. P. S.

Observer: C. V. H.

Instrument: No. 168

Checked by: W. F. R.

OBSERVED STATION	Observed	dire	ction		entric uction	Sea level reduction	Corre	Adjusted direction			
Chevy	29 176 313 326 352 357	00 03 42 24 31 17 28 31	30.21 20.8 48.63 20	, -1 +3 + +	7.31 09.8 01.2 31.93 5.7 1.16	#	0 29 313 326 352 357	, 00 02 28 32 17 28	00.00 34.5 01.5 09.45 33.8 54.78	,	

This form, with the first three and fifth columns properly filled out and checked, must be furnished by field parties. To be acceptable it must contain every direction observed at the station.

It should be used for observations with both repeating and direction theodolites.

The directions at only one station should be placed on a page.

If a repeating theodolite is used, do not abstract the angles in tertiary triangulation. The local adjustment corrections (to close horizon only) are to be written in the Horizontal Angle Record, and the List of Directions is to be made from that record directly.

Choose as an initial for Form 24A some station involved in the local adjustment, and preferably one which has been used as an initial for a round of directions on objects not in the main scheme. Use but one initial at a station. Call the direction of the initial 0° 00′ 00.″ 00, and by applying the corrected angles to this, fill in opposite each station its direction reckoned *clockwise* around the whole circumference regardless of the direction of graduation of the instrument. The clockwise reckoning is necessary for uniformity and to make the directions comparable with azimuths.

If a station has been occupied eccentrically, reduce to the center and enter in this form, in ink, the resulting corrections to the observed directions in the column provided for them. If an eccentric reduction is necessary, but not made in the field, leave the column blank. If the station was occupied centrally, and no eccentric reduction is required, put dashes in the column to show that no corrections are necessary.

Directions in the main scheme should be entered to hundredths of seconds in first-order triangulation; otherwise to tenths only. Points observed upon but once, direct and reverse, should be carried to tenths in first-order and second-order triangulation, and to even seconds only in third-order triangulation. In general, but two uncertain figures should be given.

It is recommended that the following simple plan of observing be used with a repeating instrument: Measure each single angle in the scheme at each station and the outside angle necessary to close the horizon. Measure no sum angles. Follow each measurement of every angle immediately by a measurement of its explement. Six repetitions are to constitute a measurement. The local adjustment will consist simply of the distribution of the error of closure of the horizon.

11—9503

COMPUTATION OF TRIANGLES

State: Virginia 11-9121 CORR'N SPERB'L SPHER'L PLANE ANGLE AND DISTANCE NO. LOGARITHM STATION OBSERVED ANGLE 3.701890 1 2-3 (28°-17'-18.9)1 18.9 18.8 0.324 302 2 1 dim 0.1 52.0 9.921 618 V 2 Brand 123 - 23 - 52.0 1 52.0 49.2 9.676 052 -3 Haulover No 2 28-18-49.2' 49.2 00.0 3.947810 -1-3 00.1 3.702244 1-2 2-3 3.953908 01.1 01.0 0.080999 1 Jim (56.05-01.1) 0.1 03.2 9.667318~ 27-42-03.2 2 Sand 03.2 55.8 9.997 440 96-12-55.8 55.8 3 Brand 00.1 00.0 3 702 225 2 1-3_____ 4.032 3472 1-2 write in this margin 3.776250 v 1 Jim (33°-11'-02'5) 02.5 0.261 751 2 Haulover No. 2 21-10-12.9 v 129 9.557 676 V 3 Nachapieague Not 125-38-44.6 44.6 9.909 896 V 00.0 3.595677 1-3 3.947.897~ 1-2 2-3 1 3 Comp. 7.5.T. 1-3 1-2

DEPARTMENT OF COMMERCE U. S. COAST AND GEODETIC SURVEY Form 662 Rev. April, 1931

INVERSE POSITION COMPUTATION

	$s_1 \sin \left(\alpha + \frac{\Delta \alpha}{2}\right) = \frac{\Delta \lambda_1 \cos \phi_m}{\Lambda_m}$	<u>.</u>	
	$s_1 \cos \left(\alpha + \frac{\Delta \alpha}{2}\right) = \frac{-\Delta \phi_1 \cos}{B_m}$	$\frac{\Delta\lambda}{2}$	
	$-\Delta \alpha = \Delta \lambda \sin \phi_{\rm m} \sec \frac{\Delta \phi}{2} + F$	(Δλ) ³	
in which $\log \Delta \lambda_1 = \log$	$(\lambda' - \lambda)$ -correction for arc to sin*; $\log \Delta \phi$	$\phi_1 = \log (\phi' - \phi) - \text{correction}$	on for arc to sin*; and log s=log s ₁ +
correction for are to s	sin*.		
	,, . ,	OF STATION	1 ·- ·- ·- ·- ·- ·- ·- ·- ·- ·- ·
1φ	37 23 46.57 Hag /s	- 1	75 42 01.77
2. φ'	37 30 06.731 5	and \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	75 42 29.39
$\frac{\Delta\phi\ (=\phi'-\phi)}{\Delta\phi}$	+ 06 - 20.16	$\frac{\Delta\lambda\ (=\lambda'-\lambda)}{\Delta\lambda}$	+ 00 27.62
2	+ 03 - 10.08	$\frac{2}{2}$	+ 00 13.81
$\phi_{\rm m} \left(= \phi + \frac{\Delta \phi}{2} \right)$	37 26 56.65		
Δφ (secs.)	+ 380.16	Δλ (secs.)	+27.62
log Δφ	2.579966	log Δλ	1.441224-
cor. arc—sin		cor. arc-sin	
		$\log \Delta \lambda_1$	
$\log \Delta \phi_1 = \log \Delta \lambda \log \cos \frac{\Delta \lambda}{2}$		log cos φ _m	9.899763
$\begin{array}{c} \mathbf{colog} \ \mathbf{B_m} \\ \mathbf{log} \\ \mathbf{s_i} \ \mathbf{cos} \left(\alpha + \frac{\Delta \alpha}{2} \right) \end{array}$	1. 488 9.56 / (opposite in	$\operatorname{colog} \mathbf{A}_{\mathtt{m}}$	1.490 818
$\log \left(s_i \cos \left(\alpha + \frac{1}{2} \right) \right)$	4.068 922 n. sign to Δφ)	$\frac{\log s_1 \sin \left(\alpha + \frac{1}{2}\right)}{\log s_1 \cos \left(\alpha + \frac{\Delta \alpha}{2}\right)}$	2.831805
1	1.4412241 3 log DA	$\log \tan \left(\alpha + \frac{\Delta \alpha}{2}\right)$	8.762883/
log Δλ	9.183944 log F	$\alpha + \frac{\Delta \alpha}{2}$	176 41 05.01
$\log \sin \phi_{ m m}$ $\log \sec rac{\Delta \phi}{2}$	log b	$\log \sin \left(\alpha + \frac{\Delta \alpha}{2}\right)$	8.762155
	1.225/68/	$\log \cos \left(\alpha + \frac{\Delta \alpha}{2}\right)$	9.999 273/
log.a	1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	log s ₁	4.0696501
b		cor. arc-sin	+
Δα (secs.)	+ 16.80	log s	
Δα	+ 08.40		
2	+ 08.40		·
$\alpha + \frac{\Delta \alpha}{2}$	176 41 05.0	*Use the table on t	he back of this form for correction of
α (1 to 2)	176 41 13.4	are to sin.	Comp J.EN.
Δα	- 00 16.8		CK MBM & FJK
	180		0 p4 b4 J.E.W.
α' (2 to 1)	356 40 56.6		11 752.

Table of arc-sin corrections for inverse position computations

				,					
$\log s_1$	Arc-sin correction in units of seventh decimal of logarithms	· log Δφ or log Δλ	log sı	Arc-sin correction in units of seventh decimal of logarithms	log Δφ or log Δλ	log sı	Arc-sin correction in units of seventh decimal of logarithms	log Δφ or log Δλ	•
4 177	1	2. 686	5. 223	124	3. 732	5. 525	497	4. 034	
4 327	2	2. 836	5. 234	130	3. 743	5. 530	508	4. 039	
4 415	3	2. 924	5. 243	136	3. 752	5. 534	519	4. 043	
4 478	4	2. 987	5. 253	142	3. 762	5. 539	530	4. 048	
4 526	5	3. 035	5. 260	147	3. 769	5. 543	541	4. 052	
4. 566	6	3. 075	5. 269	153	3. 778	5. 548	553	4. 057	
4. 599	7	3. 108	5. 279	160	3. 788	5. 553	565	4. 062	
4. 628	8	3. 137	5. 287	166	3. 796	5. 557	577	4. 066	
4. 654	9	3. 163	5. 294	172	3. 803	5. 561	588	4. 070	
4. 677	10	3. 186	5. 303	179	3. 812	5. 566	600	4. 075	
4. 697	11	3. 206	5. 311	186	3. 820	5. 570	613	4. 079	
4. 716	12	3. 225	5. 318	192	3. 827	5. 575	625	4. 084	
4. 734	13	3. 243	5. 326	199	3. 835	5. 579	637	4. 088	
4. 750	14	3. 259	5. 334	206	3. 843	5. 583	650	4. 092	
4. 765	15	3. 274	5. 341	213	3. 850	5. 587	663	4. 096	
4. 779	16	3. 288	5. 349	221	3. 858	5. 591	674	4. 100	•
4. 792	17	3. 301	5. 356	228	3. 865	5. 595	687	4. 104	
4. 804	18	3. 313	5. 363	236	3. 872	5. 600	702	4. 109	
4. 827	20	3. 336	5. 369	243	3. 878	5. 604	716	4. 113	
4. 857	23	3. 366	5. 376	251	3. 885	5. 608	729	4. 117	
4. 876	25	3. 385	5. 383	259	3. 892	5. 612	743	4. 121	
4. 892	27	3. 401	5. 390	267	3. 899	5. 616	757	4. 125	
4. 915	30	3. 424	5. 396	275	3. 905	5. 620	771	4. 129	
4. 936	33	3. 445	5. 403	284	3. 912	5. 624	785	4. 133	
4. 955	36	3. 464	5. 409	292	3. 918	5. 628	800	4. 137	
4. 972	39	3. 481	5. 415	300	3. 924	5. 632	814	4. 141	
4. 988	42	3. 497	5. 422	309	3. 931	5. 636	829	4. 145	
5. 003	45	3. 512	5. 428	318	3. 937	5. 640	845	4. 149	
5. 017	48	3. 526	5. 434	327	3. 943	5. 644	861	4. 153	
5. 035	52	3. 544	5. 440	336	3. 949	5. 648	877	4. 157	
5. 051	56	3. 560	5. 446	345	3. 955	5. 652	893	4. 161	
5. 062	59	3. 571	5. 451	354	3. 960	5. 656	909	4. 165	
5. 076	63	3. 585	5. 457	364	3. 966	5. 660	925	4. 169	
5. 090	67	3. 599	5. 462	373	3. 971	5. 663	941	4. 172	
5. 102	71	3. 611	5. 468	383	3. 977	5. 667	957	4. 176	
5. 114 5. 128 5. 139 5. 151 5. 163	75 80 84 89 94	3. 623 3. 637 3. 648 3. 660 3. 672	5. 473 5. 479 5. 484 5. 489 5. 495	392 402 412 422 433	3. 982 3. 988 3. 993 3. 998 4. 004	5. 671 5. 674 5. 678	973 989 1005	4. 180 4. 183 4. 187	
5. 172 5. 183 5. 193 5. 205 5. 214	98 103 108 114 119	3. 681 3. 692 3. 702 3. 714 3. 723	5. 500 5. 505 5. 510 5. 515 5. 520	443 453 464 474 486	4. 009 4. 014 4. 019 4. 024 4. 029				•

DEPARTMENT OF COMMERCE U. S. COAST AND GEODETIC SURVEY FORM 662 Rev. April, 1931

INVERSE POSITION COMPUTATION

	$s_1 \sin \left(\alpha + \frac{\Delta \alpha}{2}\right) = \frac{\Delta \lambda_1 \cos \phi_1}{\Lambda_{-}}$	<u>n</u>		
	$s_1 \cos \left(\alpha + \frac{\Delta \alpha}{2}\right) = \frac{-\Delta \phi_1 \cos}{-\beta_m}$			
	si cos (a 1 2) —			
	$-\Delta \alpha = \Delta \lambda \sin \phi_{\mathbf{m}} \sec \frac{\Delta \phi}{2} + \mathbf{F}$		<u>.</u>	
in which $\log \Delta \lambda_1 = \log$	$(\lambda' - \lambda)$ - correction for arc to \sin^* ; $\log \Delta$	$\phi_1 = \log_{\bullet}(\phi' - \phi) - \text{correction}$	on for arc to sin*; and log s=log si+	
correction for arc to s	sin*.			- Artesta
		OF STATION	o , #	
φ	37 30 06.73 50	and	75 42 29.391	
2	37 34 24.70 Br	and x	75 39 38.39	
Δφ (=φ'φ)	+ 04 17.97/	$\Delta \lambda (\equiv \lambda' - \lambda)$	- 02 51.00	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	+ 02 0898/	$\frac{\Delta \lambda}{2}$	-01 25.501	
$\phi_{\rm m} \left(= \phi + \frac{\Delta \phi}{2} \right) $	37 32 15.71			
Δφ_(secs.)	+ 257.97	Δλ <u>(secs.)</u>	- 171.00 -	_
log.Δφ	2.4/1569 -	_log Δλ	2.232996 n	
cor. arc.—sin		.corare-sin		
$\log_{\lambda} \Delta \phi_{1}$		log.Δλ ₁		
$\log \cos \frac{\Delta \lambda}{2}$		log.cos.φ _m	9.8992471	
colog B _m	1.488963-	colog A _m	1490 820	
$\log \left\{ s_1 \cos \left(\alpha + \frac{\Delta \alpha}{2} \right) \right\}$	3.900532 - (opposite in sign. to Δφ		3.623 063	
		$\log \left\{ \mathbf{s}_1 \cos \left(\alpha + \frac{\Delta \alpha}{2} \right) \right\}$	3.900 532 'n,	
log Δλ	2.232 996 1 3 log DA	$\log \tan \left(\alpha + \frac{\Delta \alpha}{2}\right)$	9.722531 1	
log.sin. $\phi_{\rm m}$	9.7848191 log.F	$\alpha + \frac{\Delta \alpha}{2}$	207 49 42.4	-
$\log \sec \frac{\Delta \phi}{2}$	log.b	$\log \sin \left(\alpha + \frac{\Delta \alpha}{2}\right)$	9.669 155 n	
	2.017 815 1	$\log \cos \left(\alpha + \frac{\Delta \alpha}{2}\right)$	9.946 624'n	
log.a	-104.2	log.s ₁	3.953908	_
	/2/- 3	cor.arc-sin_	+	
0	- 104.2	log.s		
	-52.1"		1	
$-\frac{\Delta \alpha}{2}$	- 52.1			
$\alpha + \frac{\Delta \alpha}{2}$	207 49 42.4	***************************************	ne back of this form for correction of	
	207 48 50.3	are to sin.	io back of this form for correction of	
α (1.to.2)	+ 01 44.2		J.E.W.	
Δα		,	MBM-FJKF5T	
	27 50 34.5		by J.E.W.	
α' (2 to 1)	27 50 34.5		5.J.	
		WV O,	0,0,	

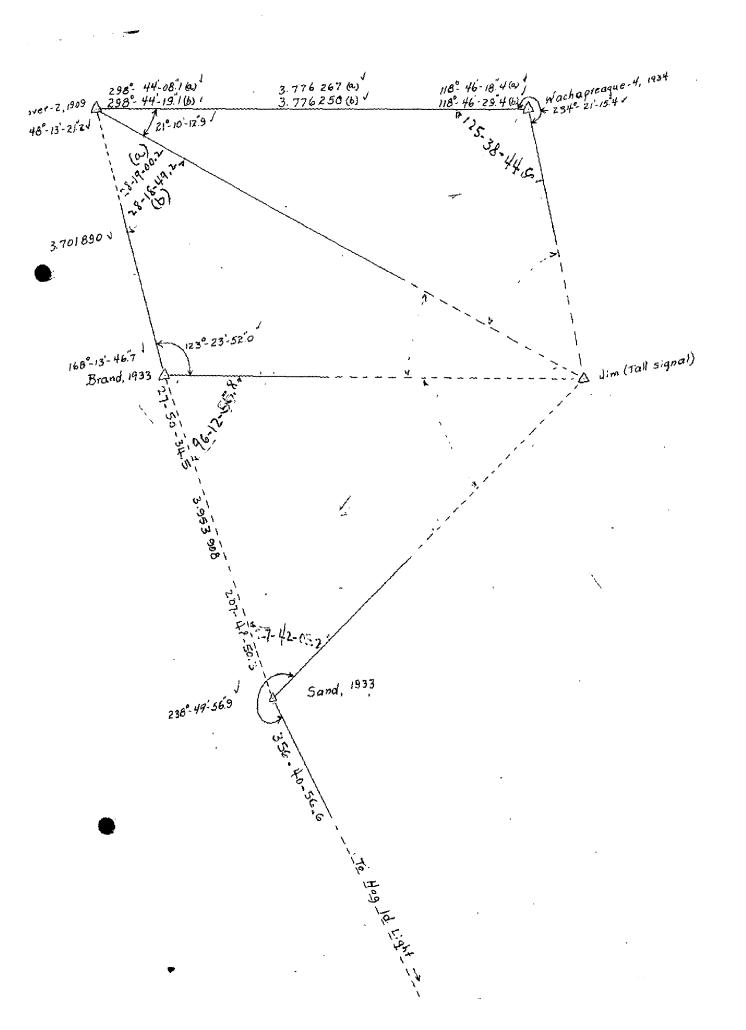
Note.—For log s up to 4.52 and for $\Delta\phi$ or $\Delta\lambda$ (or both) up to 10', omit all terms below the heavy line except those printed (in whole or in part) in heavy type or those underscored, if using logarithms to 6 decimal places.

11—9810

 $Table\ of\ arc\text{-}sin\ corrections\ for\ inverse\ position\ computations$

	-		*		- podunon com				
log s _l	Arc-sin correction in units of seventh decimal of logarithms	log Δφ or log Δλ	log s ₁	Arc-sin correction in units of seventh decimal of logarithms	log Δφ or log Δλ	log s _t	Arc-sin correction in units of seventh decimal of logarithms	log Δφ or log Δλ	•
4, 177	1	2. 686	5. 223	124	3. 732	5. 525	497	4. 034	
4, 327	2	2. 836	5. 234	130	3. 743	5. 530	508	4. 039	
4, 415	3	2. 924	5. 243	136	3. 752	5. 534	519	4. 043	
4, 478	4	2. 987	5. 253	142	3. 762	5. 539	530	4. 048	
4, 526	5	3. 035	5. 260	147	3. 769	5. 543	541	4. 052	
4. 566	6	3. 075	5. 269	153	3. 778	5. 548	553	4. 057	
4. 599	7	3. 108	5. 279	160	3. 788	5. 553	565	4. 062	
4. 628	8	3. 137	5. 287	166	3. 796	5. 557	577	4. 066	
4. 654	9	3. 163	5. 294	172	3. 803	5. 561	588	4. 070	
4. 677	10	3. 186	5. 303	179	3. 812	5. 566	600	4. 075	
4 697	11	3. 206	5. 311	186	3. 820	5. 570	613	4. 079	
4 716	12	3. 225	5. 318	192	3. 827	5. 575	625	4. 084	
4 734	13	3. 243	5. 326	199	3. 835	5. 579	637	4. 088	
4 750	14	3. 259	5. 334	206	3. 843	5. 583	650	4. 092	
4 765	15	3. 274	5. 341	213	3. 850	5. 587	663	4. 096	
4. 779	16	3. 288	5. 349	221	3, 858	5. 591	674	4. 100	
4. 792	17	3. 301	5. 356	228	3, 865	5. 595	687	4. 104	
4. 804	18	3. 313	5. 363	236	3, 872	5. 600	702	4. 109	
4. 827	20	3. 336	5. 369	243	3, 878	5. 604	716	4. 113	
4. 857	23	3. 366	5. 376	251	3, 885	5. 608	729	4. 117	
4. 876	25	3. 385	5. 383	259	3. 892	5. 612	743	4. 121	
4. 892	27	3. 401	5. 390	267	3. 899	5. 616	757	4. 125	
4. 915	30	3. 424	5. 396	275	3. 905	5. 620	771	4. 129	
4. 936	33	3. 445	5. 403	284	3. 912	5. 624	785	4. 133	
4. 955	36	3. 464	5. 409	292	3. 918	5. 628	800	4. 137	
4. 972	39	3. 481	5. 415	300	3. 924	5. 632	814	4. 141	
4. 988	42	3. 497	5. 422	309	3. 931	5. 636	829	4. 145	
5. 003	45	3. 512	5. 428	318	3. 937	5. 640	845	4. 149	
5. 017	48	3. 526	5. 434	327	3. 943	5. 644	861	4. 153	
5. 035	52	3. 544	5. 440	336	3. 949	5. 648	877	4. 157	
5. 051	56	3. 560	5. 446	345	3. 955	5. 652	893	4. 161	
5. 062	59	3. 571	5. 451	354	3. 960	5. 656	909	4. 165	
5. 076	63	3. 585	5. 457	364	3. 966	5. 660	925	4. 169	
5. 090	67	3. 599	5. 462	373	3. 971	5. 663	941	4. 172	
5. 102	71	3. 611	5. 468	383	3. 977	5. 667	957	4. 176	
5. 114 5. 128 5. 139 5. 151 5. 163	75 80 84 89 94	3. 623 3. 637 3. 648 3. 660 3. 672	5. 473 5. 479 5. 484 5. 489 5. 495	392 402 412 422 433	3. 982 3. 988 3. 993 3. 998 4. 004	5. 671 5. 674 5. 678	973 989 1005	4. 180 4. 183 4. 187	
5. 172 5. 183 5. 193 5. 205 5. 214	98 103 108 114 119	3. 681 3. 692 3. 702 3. 714 3. 723	5. 500 5. 505 5. 510 5. 515 5. 520	443 453 464 474 486	4. 009 4. 014 4. 019 4. 024 4. 029				

DEPARTMENT OF COMMERCE
U. S. COAST AND GEODETIC SURVEY
FORM 27
Ed. April, 1929


POSITION COMPUTATION, THIRD-ORDER TRIANGULATION

			U U	hs .	9.18	C /. 26	$\sin^2\alpha$ 9.8.	82 8.06	h 2.2	В 8.5	Cosa 9.7:	8 H.O.	-	φ' 37	Δφ +	ф 37	۰	a' 1 J.		<u>* </u>	12	2d / B/	a 2 Sand	Ed. A
		ω			9.1866	1.28981	9.8321	8.06471	2.296 351- 1	8.511 040	9.752 9642	4.032347	Logarithms	33 24	03	30 06	~	J:m. 1934			Sand, 1933		nd, 1933	Ed. April, 1929
	-Δ¢ - /9	3d term +			2d term +				1st term - 19				Values in seconds	24441	17.711	06.73 25	" First A	to 2			to 1	3 &	₹ 8	
	197.7131			T.	0.154 Sin		TO		197.867	\ \ \			conds	J.m. 1934		Sand, 1933	First Angle of Triangle	Sand, 193			Jim. 19.	1.m. 1934	Brand, 1933	
				$-\Delta \alpha$ 2.	$\sin \frac{1}{2}(\phi + \phi')$ 9.	Δλ 2	Sec φ' 0	A' 8.	$\sin \alpha$ 9.	8 4		⅓ (φ+φ′)		'א	۵	ان ا	THUR	33			1934	+		
				2.343 1981	9.784 7371	2.558 461	0 100 864	8.509 179	9.916 071	4.032347	Logarithms	37 31	0 ,	7.5	1	75 5	° 6	0	180	<u>,</u>	235	27	207 4	o
	!			-220.39		361.794	<u> \</u>	<u>1 x</u>	4.	<u> </u>	Values in seconds	45.61	"	36 27.60.	06 01.	42 29.	, 0	34 33.9	00 00.0	03 40.	30 53.5	42 03.2	48 50.3	, ,,
			ש	39/ 13		of C	$\sin^2 \alpha$	82	 	В	in Cosα	s	<u> </u>	60- 01	79. Do	39 0		9 × 9 ×	0	+ _ν Δα	5	2 8d Z	2	
					8.6319	1.2909	9.9366.	7.40441	1.779 779	8.511 0351	9.566 5191	3.702225	Logarithms	37	 	37 3	0	1 1;m			3 Brand	Sond &	3 Brand,	
		3d	1		\	9/	6.	#1		35/	191	25.		33 24.	01 00.27	34 24.70'	,	1934			NO 1933	nd 1933	nd, 1933	
:	-00 6	3d term +	_		2d term +				1st term 6				Values in seconds	1 73/1	27.	ထ		to 3 4			to 1	80	to 2	
	60.268			<u> </u>	0.043 8		 	T	60.225				conds	Jim, 1934		Brand 1933		Brand,			dim. 15	J:m, 1934	Sand 1933	
119362				$-\Delta \alpha$	n 1 (φ+φ')	Δλ	Sec ø'	A'	Sina	Cs.		3 (φ+φ')		3 / / ×	Δλ	1933 X		1933			1934	34	1933	
p P				2.065654 -116.32	Sin (+++) 9.785 090	2.280564	0.100 864	8.509 179.	9,968 296	3702225	Logarithms	37	۰	, 75	1	75	•	///	180	t	291	- 96	27	۰
Les holes	Comp by			11-143	- 01		14.	19,	96 7	25		33 546		36 2	03/	39 3	-	39	00	01 3	37	12 3	50	•
ornor 1900	MBM			6.32		190.794	,				Values in seconds	6		27.60	10.791	36.39	=	35.0	00.0	56.31	38.71	55.8	345	=

DEPARTMENT OF COMMERCE U. S. COAST AND GEODETIC SURVEY FORM. 27 Ed. April, 1929

POSITION COMPUTATION, THIRD-ORDER TRIANGULATION

			ا	h ₃		a	Sin²	37	מ	В	Cos a	50	Ì	φ,	Δφ	6		α,		Δα	B	247	Ŗ	
					8.6320	1.2909	Sin ² \(\alpha\) 9366	7.4045	1.779 798	8.511 035		3.702244	Logarithms	370	1	37 3	o	1 \(\int \)		i	2 Bran	Haulor	2 Brand 1933	Ed. April, 1929
					9			2	98	35	519	44	hms	33 2	01 0	34 2	•	1934		,	Brand 1933	Haulover Noz 1909	1933	1929
	- Δφ	3d term			2d term				1st term				Value	24.43	00.27	24.70	* B	to			to 1	1909 &	to od	
	1	+			+				60.23				Values in seconds	1		2 811	ret And	150			1	J:10	8 Houle	
	60.27				0.04 8		ľ		23				nds	J:m. 1934		Brand 1933	FIRST ANGLE OF TRIANGLE	Brand, 18		i	J:m. 1934	J:m 1934	to 8 Haulover No.2, 1909	
	İ			-Δα	Sint (+++) 9.785 093	Δ)	Sec \psi'	A'	Sina	s		⅓ (φ+φ′)		+		33	RIANGLE	1933			334	+	2 1905	-
				2.06	7) 9.78	2.28	0.10	8.50	9.96	3.70	Logo	-	_	۲,	₽	<u>ک</u>	,	- //	180		291	+ /:		0
				2.065 677	5093	2.280 584	0.100864	8.509 180	9.968296	3.702244	Logarithms	37-33-	0	75 36	- 03	75 39	, 200	<u> </u>	00	<u> </u>	<u> </u>	123 23	168 1	
				-116.3		1		<u> </u>	14	.}	Values in seconds	-54.6		 	屵	9 38.39		_	<u> </u>	01 5	37 36	3 52.0	13 4	
	,		,.	8		190.80		,	<u>,-</u> .					27.59	10.80	39	z ,	35.0	00.0	56.3	38.7	<u> </u>	46.7	=
			ם	P.		C	$\sin^2 \alpha$	క్ష	<u> </u>	₩	Cos a	S		Φ,	Δφ	0		α,		Ω	8	3dZ	R	
					8.8050	1.2916	9.6178	7.8956	2342515	8.511031	9 883674	3.947810	Logarithms	37	<u> </u>	37	•	1 J.m.			8 Hous	Brand,	Houl	
					0	6	S	6	15	3/	74	0/18	thmos	33	03	37		1934			over Ne	1 1934	ver A	
	_ Δφ_	3d term		 -	2d term				1st terr				Valu	24.43	40.11	04.54					3 Haulover No. 2, 1909 to 1		3 Haulover No.2 1818 to 2 Brand 1933	
	+220:11	+	_}		+				1st term 220.05	-			Values in seconds	1		3 X	-) 	to 3 Ha				&	ь <u>2</u>	
	0:11				0.06				1.05	"			onds	J.M. 1		autores		whover			J.m. 1934	J.m. 1.	rand,	
				Δα	Sin∮(φ⊣	Δλ	Sec ø'	A'	Sina	s		*		1934	\ 	Haulover No.2,1909		Haulover No.2,1909			934	1934	/933	
119362					9.	10	<u> </u>	jœ	<u> </u>	S		1 (a+4')		۲	Δ,	>				<u> </u>	().		<u> </u> 	
. e	2	\		2.152.052	Sin 1 (+++1) 9. 785 309	2.366 743	0.100864	8.509/80	9 808 892	3.947 810	Logarithms	37.	- 1	75	,	75		139	180	+	3/9	28	348	•
e. s. coarcant American of	gre			1	90	_	7	0	7 27	0		35-11	- (03	40	-	36	00	02	54	18	13	-
1200 Copyright 1000	on the	· \ \		-141.9		-232.67					seconds	14.5		27.59	52.67	20.26	=	53,9	00.0	21.9	32.0	49.2	21.2	=

