Rev. Dec. 1933			
DEPARTMENT OF COMMERCI			
U.S. COAST AND GEODETIC SURVEY			
R. S. PATTON, DIRECTOR			

DESCRIPTIVE REPORT

Sheet No. 5132....(3/)

StateFlorida

LOCALITY

Lake George

Juniper Creek

Photos taken 1935

-1937

Hubert A. Paton

Applied to Chart 687. November 1939. La.m.

DEPARTMENT OF COMMERCE U. S. COAST AND GEODETIC SURVEY

TOPOGRAPHIC TITLE SHEET

The Topographic Sheet should be accompanied by this form, filled in as completely as possible, when the sheet is forwarded to the Office.

Field No. 31

REGISTER NO.T-5132

State	Та	T51	32
State	Florida		
General locality	Lake George		
Locality	Juniper Creek	1	
Scale 1:10,000	Date of survey	March 13, 1935	19
Vessel	Party No. 26		
Chief of party	Hubert A. Paton		
Surveyed by	See Page No. 2	***************************************	
Inked by	Robert H. Young		
Heights in feet abo	veto g	round to tops of	trees
Contour, Approximat	e contour, Form lin	ne intervalf	et
Instructions dated.	March 4, 1935	······································	19
Remarks: U. S. Army	Air Corps Five Ler	is Camera No. 32-2	used
Field Inspection	February and August	, 1937	

Notes on Compilation

Sheet No. 31

Register No. T-5132

PHOTOS- Five lens, Flight No. 22, Photos Nos. 836 to 859 Date Flown- March 13,1935

River Level Hormal

Scale Plot-William C. Russell, 4/17/37

Scale Factor Used-1.00

Projection by- Washington, Office.

5/20/37 Control. Plotted by- Hubert A. Paton,

5/21/37 Control Checked by-W. C. R.

Topography Transferred by- Robert H. Young 7/19/37

7/19/37 Topography Checked by-H. A. P.

Smooth Radial Plot by-H. A. P.

Details Inked by-R. H. Y.

Area of Detail Inked-17.9 sq. Stat. Miles.

Length of Shoreline (over 200 m) 6.9

(under 200m) 9.0

Ref. Sta.; Yellow, 1935

Lat: 29° 16' 10.30" (317.1 m.) (cmadjusted) Long: 81° 38' 31.36" (846.64 m.)

N. A. 1927 datum

note: an approximate adjust ment to the fielderposition was by Paton. (-0.2 meters in longitude) and applied to the projection of this sheet.

Descriptive Report

to accompany

Photo-Topographic Sheet No. 31 (field)

Register No. 5132

General Information:

This sheet was compiled from photographs taken by the U. S. Army Air Corps, using a five lens camera, No. 32-2. There was but one flight on this sheet, No. 22, which was flown in a northwest direction. The photos were taken at an elevation of about 5000 feet and the scale of the photos was almost exactly 1:10,000.

The tide range in this area is zero so the stage of the tide is not important. From the appearance of the photos the lake was at normal river level.

Control:

Triangulation -- Control for this plot was obtained from the unadjusted field positions of the second order stations established by Lieut. K. G. Crosby in 1935. A small adjustment was made to the longitude of the positions for error in closure of arc. In the case of the reference station, Yellow, it amounted to 0.2 meters mimus. For this reason the seconds into meters will not check exactly.

Graphic Control Sheets - Considerable control was secured Tarante . from Sheet ZZ, surveyed by Lieut. Comdr. L. D. Graham in 1937, on a scale of 1:20,000. "Sed" is a described H. & T. station but the others, "Cor", "War" and "Urn" were temporary hydrographic signals under Number on lone trees and fish traps.

Air Photo Section

C 5 134 14

I des. H+T station; filed under No. T 5132; sed (d) Additional control .- Station "Cor", the southwest corner of an old platform out in the lake, was located by sextant angles, partly as a check on the graphic control sheet, and also for a definite location for the station. There was found a difference of about 5 meters on the 1:20,000 scale sheet between the location by sextant angles and the plane table location. sextant angles were used for the position on the photo compilation. The fix was as follows:

> Juniper 70021 War 320471 Urn

Check Angle - War to Volusia Bar Beacon No. 102, 950 33'

The above sources furnished control for the sheet. There were no State Control Survey Traverses in this area. Additional control would have been helpful on the A wing of the flight, but not absolutely necessary, as a good plot was carried through from the

stations along the shore. The control is not very strong adequate for station Juniper as picked on the photos would not check the plot. The field inspection at this station was very difficult due to dense growth of trees, and some mistake had probably been made in identifying the reference points. A field inspection station "Pt.B", near Juniper, was selected and scaled from the graphic control sheet, and then plotted on the photo-topographic sheet. This point checked to within 3 or 4 meters which was considered

* This difference is 10m. instead of 3 or 4. T.M. 7.

within the allowable degree of accuracy, since it had been scaled from a small scale survey.

Station Yap, as picked on the photos in the field was in error. . The point picked was some other signal which had not been located on the G. C. Sheet.

Station Hav was located on the photos as the southeast corner of an old abandoned fish net rack out in the lake. The station could not be held for control on the plot, and it is believed that since the photos were taken the ends of the dock have broken down and the present end is inshore from the one shown. All of these stations were relocated by means of the radial plot and the new positions were used as radial points.

Radial Plot:

The five lens pictures were mounted in accordance with the calibration tests furnished by the office for this camers. In most cases it was found that the wings had to be moved slightly in toward the B print to obtain good intersection of radial lines and to check the control. The amount moved was not always the same on each picture. In no case was the wing moved in enough to check the detail with the B. Print. With this method of mounting it is impossible to trace detail across the junction of the wing prints and the B prints, but since there was generous overlap, all areas could be traced from some photo without the necessity of crossing the junction lines.

After the radial points had been picked, all radial lines that did not check were corrected or rejected. No great difficulty was experienced in making the plot go through. Note: There seems to have been difficulty however with been difficulty however with a number of control pts: The plot (see above paragraph)

The area covered by this sheet is a part of the Ocala National Forest. For the most part it is covered with low pine and scrub oak and deciduous trees. Along the shore the trees are taller and there are a few scattered palms. The southern part of this sheet is low, rather flat, and covered with swamp and marsh. The central and northern parts are higher and rolling country.

At Station Cliff, there is a steep bluff estimated at about seventy feet above the water line. The bluff falls away gradually to the north and south for about one-half mile in each direction along the shoreline. The face of this bluff, in front of the station, is partially cleared from trees, making the yellow sand on the slope a good land mark which can be seen from the opposite side of the lake when conditions are favorable.

Silver Glen Spring is partially filled with water grass and a plant called "bloom" by the local inhabitants. This plant grows in the water and is attached to the bottom. It is found in many of the shallow streams in this part of the country. This stream is navigatable by small boats and is used by fishermen as a haven, when in this vicinity, in time of storms on Lake George.

At the mouth of Silver Glen Springs Run there is constructed a hyacinth fence to keep the opening clear. This fence is constructed of chicken wire supported by small stakes extending about two feet above the water. These fences were not located by the Graphic Control party and only the outer ends showed clearly on the photos. The inshore ends were spotted by the field inspection so they could be traced quite accurately.

Juniper Hunting and Fishing Lodge is on the south side of Silver Glen Springs Run at Station "Sed". It is the only building of importance on this sheet.

Juniper Creek is navigatable by small boats but at times the entrance is entirely blocked by hyacinth. The creek is filled with water grass and bloom and at times it becomes necessary to pole through this vegetation, there being no definite channel. The north entrance is completely clogged with this grass and bloom and is not navigable.

There are no cultivated field or orchards on this sheet except fo r two small groves near Silver Glen Springs.

Roads:

The double solid lines indicate a graded shell road built in a fire break. The double dashed lines indicate sand roads, not graded. These are passable by automobile but not traveled to any great extent due to the loose sand and the possibility of getting stuck. The single dased lines west of the shell road, laid out square with the world, are recent/cleared paths, which serve as means of access to forest fires. The other trails are very poor sand roads or dim paths, and may not be passable for wheeled traffic.

Pilings:

In the vicinity of Station Juniper there are several groups of piles, apparently the foundation piles for old fishing shacks and net drying racks. These pilings have been indicated by small circles.

Miscellaneous:

The firebreaks have been shown by a dash and dot line. This is not a conventional symbol but is one that was improvised There are no bridges on this sheet. for these sheets.

It would have been desirable to have begun the flight about one mile farther south so that stronger intersections of the radial lines along the shore couldabe. obtained. The result of the present flight is that the intersection of the radial lines along the south end of the lake were a little slim and the detail could not be located with the same degree of accuracy as in other portions of the sheet. Inshore detail only affected; nothing of importance in area south of last photo center.

Hone recommended (see P.2, field review)

Geographic Names:

A complete list of the names shown on the overlay sheet are here given together with the sources.

Lake George.- U.S.C.&G.S. Chart No. 508, and other maps. All in agreement.

Yellow Bluff. Chart No. 508, U. S. Dept. of Agriculture, Ocala

National Forest Map and others.

Pats Island. A partial clearing in the Ocala Scrub, cutside of the tracing limits of this flight. Name shown on the Forest Map and the U. S. Geological Survey, Ocala Division Map. All of the above names are in common use.

Silver Glen Springs Run. The springs at the head of this run are shown as Silver Springs on Chart No. 508, but there is a much more famous springs over near Ocala known by this same name. To distinguish between the two the local inhabitants are very careful to call this one Silver Glen Springs and it is so shown on the National Forest Map and the Ocala Division Map. G. C. Sheet ZZ is in accordance with this practice. It is recommended that our charts be changed accordingly.

Juniper Creek. Shown thus on Chart No. 508, and all National Forest Maps. On the Ocala Division Map and alternate name "Sweetwater Creek" is shown together with the Juniper Creek name. This is the only use of the name that was encountered and all the local inhabitants call it Juniper Creek. No change recommended.

it Juniper Creek. No change recommended.

Ocala National Forest Game Refuge. Term used on Dept. of Agriculture maps and on signs along all the roads. It refers to the area south of the Hopkins Prairie Road down to Silver Glen Springs Run.

Hopkins Prairie Road. This name is shown on all maps of the Forest and on a preliminary Quadrangle map compiled by the Florida Mapping Project. It is in common use.

All of the above names are in common use and their adoption is recommended.

Respectfully submitted,

William C. Russell, Ensign, U. S. C. & G. S.

Special Symbols

Shoreline: Cypress Swomp --- outer edge of tree symbol (changed to light Marsh --- light solid line

Fast Land --- heavy "

Fire break limits --- long dashed line (medium weight)

Hyucinth Fence --- medium dashed line and labelled.

Piles _-- small circle open center; labelled.

Fish Met Racks ---- dashed line, like "pier roins" symbol.

Motes in red by T.M. Price May 9 1938 Upon review.

REVIEW OF AIR PHOTO COMPILATION NO. T-5132

Chief of Party: Hubert A. Paton

Compiled by Robert H. Young

Project: HT 168

Instructions dated: Mar. 4, 1935

- 1. The charts of this area have been examined and topographic information necessary to bring the charts up to date is shown on this compilation. (Par. 16a, b,c,d,e,g and i; 26; and 64) Wharf shown on Chart No. 508 near old hunting lodge is now broken down and only the a portion remains as shown on this sheet.
- -2. Change in position, or non-existence of wharfs, lights, and other topographic detail of particular importance to navigation which affect the chart, is discussed in the descriptive report. (Par. 26; and 66 g,n) see above
 - 3. Ground surveys by plane table, sextant, or theodolite have been used to supplement the photographic plot where necessary to obtain complete information, and all such surveys are discussed in the descriptive report. (Par. 65; and 66 d,e) Yes
 - 4. Blue-prints and maps from other sources which were transmitted by the field party contain sufficient control for their application to the charts. (Par. 28) None.
 - 5. Differences between this compilation and contemporary plane, table and hydrographic surveys have been examined and rectified in the field before forwarding the compilations to the office and are discussed in the descriptive report. No differences.
 - 6. The control and adjustment of the photo plot are discussed in the descriptive report. Unusual or large adjustments are discussed in detail and limits of the area affected are stated. (Par. 12b; 44; and 66 c,h,i) No unusual or large adjustments were necessary.
 - 7. High water line on marshy and management coast is clear and adequate for chart compilation. (Par. 16a, 43, and 44) Yes.

NOTE: Strike out paragraphs, words or phrases not applicable and modify those requiring it. Paragraph numbers refer to those in the Topographic Manual. Refer also to the pamphlet "Notes on the Compilation of Planimetric Line Maps from Five Lens Air Photographs."

- 8. The representation of low water lines, reefs, coral reefs and rocks, and legends pertaining to them is satisfactory. (Par. 36, 37, 38, 39, 40, 41) none shown.
- 9. Recoverable objects have been located and described on Form 524 in accordance with circular 30, 1933, circular letter of March 3, 1933, and circular 31, 1934. (Par. 29, 30, and 57)
 All such objects were described and submitted by L. D. Graham.
- 10. A list of landmarks was furnished on Form 567 and instructions in the Director's letter of July 16, 1934, Landmarks for Charts, complied with. (Par. 16d, e; and 60) No landmarks on this sheet.
- 11. All bridges shown on the compilation are accompanied by a note stating whether fixed or draw, clearance, and width of draw if a draw bridge. Additional information of importance to navigation is given in the descriptive report. (Par. 16c)

 No bridges on this sheet.
- 12. Geographic names are shown on the overlay tracing. The accepted local usage of new names has been determined and they are listed in the report, together with a general statement as to source of information and a specific statement when advisable. Complete discussion of place names differing from the charts and from the U.S.G.S. Quadrangles is given in the descriptive report, together with reasons for recommendations made. (Par. 64, and 66k) Yes
- 13. The geographic datum of the compilation is N. A. 1927 and the reference station is correctly noted. See descriptive report for discussion of corrections for closing errors in the arc.
- 14. Junctions with adjoining compilations have been examined and are in agreement. (Par. 66j)Junction with T-5139 is satisfactory. Sheet No. T-5682 will be discussed in the report for the latter sheet after it has been compiled.
- 15. The drafting is satisfactory and particular attention has been given the following:
 - Standard symbols authorized by the Board of Surveys and Maps have been used throughout except as noted in the report. Symbol for firebreaks has been improvised.
 - 2. The degrees and minutes of Latitude and Longitude are correctly marked. Yes

- 3. All station points are exactly marked by fine black dots. Yes
- 4. Closely spaced lines are drawn sharp and clear for printing. Yes
- 5. Topographic symbols for similar features are of uniform weight. Yes
- 6. All drawing has been retouched where partially rubbed off. Yes
- 7. Buildings are drawn with clear straight lines and square corners where such is the case on the ground. Yes

48) (Par. 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46,

- No additional surveying is recommended at this time. 16.
- Remarks: Photos Nos. 836 to 839 inclusive will be retained until Sheet T-5682 has been compiled. Reciol. 17.

18. Examined and approved;

lubert A. Paton Chief of Party

10 10 10 10 10 o piles 10 Section Chart 50f (plate cor. to 11/12/36) Scale 1:40,000 (note: distances as charted are badly distorted Juniper Creek

GEOGRAPHIC NAMES Survey No. 7- 513		× 00	Sur Co	A STANTANT	or o	A STAN	Cuide C	2000 McHolly	J.S. Jeger J.	<i>></i> /
Name on Survey	S A	Cho. 200	C 0,	all D	or index	or see	,0.°/ G	good H	7. K	
Lake George	V	1	1							1
Vellow Bluff		1	/		/					2
Ocala National Forest			/ / /	1						3
Silver Glen Spring & Run	silver ing?	silver ogs	silver Glen	~						4
Junipen Creek	/	/	1	/				,		5
Parts XXX			/							6
F.M. Arredondo Grant			/							7
										8
								1.		9
							<u></u>		<u> </u>	10
							<u></u>		-	11
										12
					<u></u>					13
										14
						<u> </u>	<u> </u>			15
				<u> </u>						16
										17
									<u> </u>	18
							<u> </u>		<u> </u>	19
										20
								'	,	21
										22
							<u> </u>	_		23
·		<u> </u>								24
Names underlined in						<u> </u>				25
by StE o	n 2/13-/.	8								26
										27

Remarks Decisions ok for Planimetric Map only Not on sheet or for Planimetric Map only · M 234

PLANE COORDINATE GRID SYSTEM

Positions of grid intersections used for fitting the grid to this compilation were computed by Division of Geodesy and the computation forms are included in this report.

Positions plotted by H.D. REED. JR.

Positions checked by Ruling Machine
Grid inked on machine by H.D. REED, Jr.
Intersections inked by H. D. REED, JR.
Points used for plotting grid:
x = 285,000 FT. x 305,000 y= 1,800,000 FT. y 1,765,000
x 305,000 y 1,800,000 y
x 295, 000 y 1, 185, 000
x 285, 200 \$ 1, 765, 200
Triangulation stations used for checking grid: X=295, 291,18- 4= 1,194,781.89 1. ellow, 1935 (Ref. 5+a.) 5.
2 6
7.
48.

Geodetic positions from transverse Mercator coordinates

х		_log S _s	
_C		_log (1200/3937)	9.48401583
_x' (=x-C)	-215,000	_log (1/R)	
$x'^3/(6\ell_0^2)_g$	<u>3.80</u> 214,996.20	_log S _m	
_S _g	214,996.20	_cor. arc to sine	
		_log S ₁	4.81646454
log S _m ²	9.632944	_log A	8,50937463
_log C	1.154376	_log sec ϕ	0.05937979
log Δφ	0.787320	_log Δλ ₁	3.38521896
		_cor. sine to arc	+ 1003
y		_log △ λ	3.38522899
_ø'(by interpolation)	29° 17' 07'.5147	=	2427."8899
_ Δφ	6.1280	λ (central mer.)	3.38522899 2427."8899 81° "
.	29° /7'01.3867	Δλ	
-9			81° 40' 27.88°
		Station	
Y		Station	
X		Station	305,000
_C	- 195,000	Station	305,000 800,000 9.48401583
_Cx' (=x-C)	- 195,000 - 2.83	Station	305,000
C $x' (=x-C)$ $x'^{3}/(6 {\binom{6}{6}}^{2})_{g}$	_ <u></u>	Station//	305,000 800,000 9.48401583
_Cx' (=x-C)		Station	305,000 800,000 -9.48401583 -4.77406969
C	- <u>2.83</u> 194,997.17	Station	305,000 800,000 -9.48401583 -4.77406969 -627
C = x - C -x' (= x - C) $-x'^{3}/(6C_{o}^{2})_{g}$ $-S_{g}$ $-\log S_{m}^{2}$	_ <u></u>	Station	305,000 800,000 -9.48401583
C $x' (=x-C)$ $x'^3/(6 {\binom{0}{2}}_8)$ S_8 $\log S_m^2$ $\log C$	- 2.83 194,997.17 9.548139 1.154376	Station	305,000 800,000 -9.48401583
C = x - C -x' (= x - C) $-x'^{3}/(6C_{o}^{2})_{g}$ $-S_{g}$ $-\log S_{m}^{2}$	- 2.83 194,997.17 9.548139	Station	305,000 800,000
C $x' (=x-C)$ $x'^3/(6 {^{\circ}_{o}}^2)_g$ S_g $\log S_m^2$ $\log C$ $\log \Delta \phi$	- 2.83 194,997.17 9.548139 1.154376	Station	305,000 800,000 -9.48401583
_C	- 2.83 194,997.17 9.548139 1.154376 0.702515	Station	305,000 800,000 -9.48401583
C $x' (=x-C)$ $x'^3/(6 {^{\circ}_{\circ}}^2)_g$ S_g $\log S_m^2$ $\log C$ $\log \Delta \phi$ y $\phi'(by interpolation)$	- 2.83 194,997.17 9.548139 1.154376 0.702515 29°17′07″5147 - 5.0410	Station X Station X log S_g log $(1200/3937)$ log $(1/R)$ log S_m cor. arc to sine log S_1 log A log sec ϕ log $\Delta\lambda_1$ cor. sine to arc log $\Delta\lambda$ λ (central mer.)	305,000 800,000 -9.48401583
_C	- 2.83 194,997.17 9.548139 1.154376 0.702515	Station X Station X log S_g log $(1200/3937)$ log $(1/R)$ log S_m cor. arc to sine log S_1 log A log sec ϕ log $\Delta\lambda_1$ cor. sine to arc log $\Delta\lambda$ λ (central mer.)	305,000 800,000 -9.48401583

Explanation of form:

$$x' = x - C$$

$$S_g = x' - \frac{{\chi'}^3}{(6 {\rho_o}^2)_g}$$

$$S_m = \frac{1}{R} \left(\frac{1200}{3937}\right) S_g$$

Geodetic positions from transverse Mercator coordinates

	East	Station $\frac{\chi}{2}$	185,000
		_log S _g	5.31174689
.X		_log (1200/3937)	9.48401583
_C	-205,000	_log (1/R)	2555
x' (=x-C)	_ 3 29	_ log S _m	4.79578827
$x'^3/(6\ell_o^2)_g$	- 3.29 204,996.71	cor. arc to sine	- 692
_S _g	207, 170. 11		479578135
	9.591577	_log S ₁	8.50937553
log S _m ²	1.153646	_log A	0.05920524
_log C	0.745223	_ log sec ϕ	336436212
_log Δφ	0.775225	_log Δλ ₁	+ . 911
		_cor. sine to arc	221127122
-y	00° 11' 00'00m	_log △ λ	2214 7420
_ø'(by interpolation)			23/4."0420
_Δφ	- <u>5.5619</u> 29° 14′ 33″.4432	_\(\lambda\) (central mer.)	
<i>•</i>	29 17 33.7732		38 34.04 81° 38′ 34″04
		_λ	01 00 01.01
		Station	1,765,000
		StationX	
.x		log S _g	<i>5</i> .33243078
_C	-2/5 000	log S _g	<i>5.33243078</i> 9.48401583
_C _x' (=x-C)	-2/5,000 380	log S _g log (1200/3937) log (1/R)	5.33243078 9.48401583 2555
C = x' (=x-C) $-x'^3/(6C_0^2)_g = x'$		log S _g log (1200/3937) log (1/R) log S _m	5.33243078 9.48401583 2555 4.81647216
_C _x' (=x-C)		log S _g log (1200/3937)log (1/R)log S _m cor, arc to sine	5.33243078 9.48401583 2555 4.81647216 - 762
$C_{x'} (=x-C)_{x'}^{3}/(6C_{o}^{2})_{g}_{g}_{g}$	- 3.80 214, 996.20	log S _g	5.33243078 9.48401583 2555 4.81647216 - 762 4.81646454
C = x' (=x-C) $-x'^3/(6C^2)_g = -x'^3/(6C^2)_g$ $-\log S_m^2 = -x'^3/(6C^2)_g$	- 3.80 2/4, 996.20 9.632944	log S _g	5.33243078 9.48401583 2555 4.81647216 - 762 4.81646454 8.50937674
C $X' (=X-C)$ $X'^3/(6C^2)_g$ S_g S_g S_m S_g S_g	- 3.80 214, 996.20 9.632944 1.152672	log S _g log (1200/3937)log (1/R)	5.33243078 9.48401583 2555 4.81647216 - 762 4.81646454 8.50937674 0.05897145
C = x' (=x-C) $-x'^3/(6C^2)_g = -x'^3/(6C^2)_g$ $-\log S_m^2 = -x'^3/(6C^2)_g$	- 3.80 2/4, 996.20 9.632944	_ log S _g log (1200/3937) log (1/R) log S _m cor. arc to sine log S ₁ log A log sec φ log Δλ ₁	5.33243078 9.48401583 2555 4.81647216 - 762 4.81646454 8.50937674 0.05897145 3.38481273
C $x' (=x-C)$ $x'^3/(6 C^2)_g$ S_g $\log S_m^2$ $\log C$ $\log \Delta \phi$	- 3.80 214, 996.20 9.632944 1.152672	$\log S_g$ $\log (1200/3937)$ $\log (1/R)$ $\log S_m$ $\cos S_1$ $\log S_1$ $\log S$ $\log S_2$ $\log S_3$ $\log S_4$ $\log S_4$ $\log S_4$ $\log S_4$ $\cos S_$	5.33243078 9.48401583 2555 4.81647216 - 762 4.81646454 8.50937674 0.05897145 3.38481273 + 1001
_C	- 3.80 214, 996.20 9.632944 1.152672 0.785616	$\log S_g$ $\log (1200/3937)$ $\log (1/R)$ $\log S_m$ $\cos S_1$ $\log A$ $\log S_2$ $\log \Delta \lambda_1$ $\cos \Delta \lambda_1$ $\log \Delta \lambda$	5.33243078 9.48401583 2555 4.81647216 - 762 4.81646454 8.50937674 0.05897145 3.38481273 + 1001 3,38482274
_Cx' (=x-C)	- 3.80 214,996.20 9.632944 1.152672 0.785616	$\log S_g$ $\log (1200/3937)$ $\log (1/R)$ $\log S_m$ $\cos S_1$ $\log S_1$ $\log A$ $\log Sec \phi$ $\log \Delta \lambda_1$ $\cos \Delta \lambda$ $\log \Delta \lambda$	5.33243078 9.48401583 2555 4.81647216 - 762 4.81646454 8.50937674 0.05897145 3.38481273 + 1001 3,38482274 2425".6199
C $x' (=x-C)$ $x'^3/(6 C^2)_g$ S_g S	- 3.80 214,996.20 9.632944 1.152672 0.785616 29°11'20".9911 - 6.1040	$\log S_g$ $\log (1200/3937)$ $\log (1/R)$ $\log S_m$ $\cos S_1$ $\log S_1$ $\log S_2$ $\log A$ $\log \Delta \lambda_1$ $\cos \Delta \lambda$ $\Delta \lambda$ $\Delta \lambda$ $(central mer.)$	5.33243078 9.48401583 2555 4.81647216 - 762 4.81646454 8.50937674 0.05897145 3.38481273 + 1001 3,38482274
_Cx' (=x-C)	- 3.80 214,996.20 9.632944 1.152672 0.785616 29°11'20".9911 - 6.1040	$\begin{array}{c c} \log S_g & \\ \log (1200/3937) \\ \log (1/R) & \\ \log S_m \\ \\ \log S_1 \\ \log S_1 \\ \log A \\ \\ \log Sec \phi \\ \\ \log \Delta \lambda_1 \\ \\ cor. \ sine \ to \ arc \\ \\ \log \Delta \lambda \\ \\ \lambda \end{array}$	5.33243078 9.48401583 2555 4.81647216 - 762 4.81646454 8.50937674 0.05897145 3.38481273 + 1001 3,38482274 2425".6199

(over)

State Fla	East	χ 2° Station χ 1,7	85.000
		7	
_X		log S _g	5.31174689
_C		_log (1200/3937)	9.48401583
_x' (=x-C)	-205,000	log (1/R)	2555
_x' ³ /(6°C _o ²)g	- 3.29	log S _m	4.79578827
S _g	- <u>3.29</u> 204,996.71	_cor. arc to sine	- 692
- VB		_log S ₁	479578135
log S _m ²	9.591577	log A	8.509 375 53
log C	1.153646	log sec ϕ	0.05920524
_log ∆ø	0.745223	$\log \Delta \lambda_1$	336436212
-108 - 19		_cor. sine to arc	+ . 911
у		_log △ λ	3.36437123
_ø'(by interpolation)	29° 14′ 39.0051	_Δλ	2314."0420
Δφ	- 5.5619	${-\lambda}$ (central mer.)	81°'"
<i>φ</i>	- <u>5,5619</u> 29° 14′ 33″.4432	_Δλ	38 34.042
-y			81° 38′ 34″.042
	i	_ ^	
		Station Y /	285,000 765,000
-X		Station X /	285,000 765,000 5.33243078
_x		Station	285,000 ,765,000 5.33243078 _9.48401583
_Cx' (=x-C)	-2/5,000	Station X /	285,000 765,000 5.33243078 _9.48401583 _2555
_c	3.80	Station	285,000 765,000 5.33243078 9.48401583 2555 4.81647216
_Cx' (=x-C)	-215,000 - <u>3.80</u> 214,996.20	Station	285,000 765,000 5.33243078 9.48401583 2555 4.81647216 - 762
C _x' (=x-C)	- <u>3.80</u> 2/4, 996.20	Station	285,000 765,000 5.33243078 -9.48401583 2555 4.81647216 -762 4.81646454
C	- 3.80 214,996.20 9.632944	Station	285,000 765,000 5.33243078 _9.48401583 2555 4.81647216 - 762 4.81646454 8.50937674
C _x' (=x-C)	- 3.80 2/4,996.20 9.632944 1.152672	Station	285,000 765,000 5.33243078 9.48401583 2555 4.81647216 - 762 4.81646454 8.50937674 0.05897145
C $x' (=x-C)$ $x'^{3}/(6f_{0}^{2})_{g}$ S_{g} S_{g}	- 3.80 214,996.20 9.632944	Station	285,000 765,000 5.33243078 -9.48401583 -2555 4.81647216 -762 4.81646454 8.50937674 0.05897145 3.38481273
C $X' (=X-C)$ $X'^{3}/(6f_{0}^{2})_{g}$ S_{g} S_{g} S_{g} S_{g}	- 3.80 2/4,996.20 9.632944 1.152672	Station	285,000 765,000 5.33243078 -9.48401583 2555 4.81647216 -762 4.81646454 8.50937674 0.05897145 3.38481273 + 1001
C $X' (=X-C)$ $X'^{3}/(6f_{0}^{2})_{g}$ S_{g} S_{g} S_{g} S_{g}	- 3.80 2/4,996.20 9.632944 1.152672 0.785616	Station	285,000 765,000 5.33243078 9.48401583 2555 4.81647216 - 762 4.81646454 8.50937674 0.05897145 3.38481273 + 1001 3.38482274
C $X' (=X-C)$ $X'^{3}/(6f_{0}^{2})_{g}$ S_{g} S_{g} S_{g} S_{g} S_{g} S_{g}	- 3.80 214,996.20 9.632944 1.152672 0.785616 29°11'20".9911	Station	285,000 765,000 5.33243078 -9.48401583 -2555 4.81647216 -762 4.81646454 8.50937674 0.05897145 3.38481273 + 1001 3,38482274 2425".6199
C $X' (=X-C)$ $X'^3/(6C^2)_g$ S_g $S_$	- 3.80 214,996.20 9.632944 1.152672 0.785616 29°11'20".9911 - 6.1040	Station X log S_g log $(1200/3937)$ log $(1/R)$ log S_m cor. arc to sine log S_1 log A log $\Delta\lambda_1$ cor. sine to arc log $\Delta\lambda$	285,000 765,000 5.33243078 9.48401583 2555 4.81647216 - 762 4.81646454 8.50937674 0.05897145 3.38481273 + 1001 3.38482274
C $X' (=X-C)$ $X'^3/(6f_0^2)_g$ S_g	- 3.80 214,996.20 9.632944 1.152672 0.785616 29°11'20".9911	Station X Station Y log S_g log $(1200/3937)$ log $(1/R)$ cor. arc to sine log S_1 log A log sec ϕ log $\Delta\lambda_1$ cor. sine to arc log $\Delta\lambda$ $\Delta\lambda$	285,000 765,000 5.33243078 -9.48401583 -2555 4.81647216 -762 4.81646454 8.50937674 0.05897145 3.38481273 + 1001 3,38482274 2425".6199

Explanation of form:

$$x' = x - C$$

$$S_g = x' - \frac{x'^3}{(6 O_o^2)_g}$$

$$S_m = \frac{1}{R} \left(\frac{1200}{3937}\right) S_g$$

R = scale reduction factor ϕ' is interpolated from table of y $\Delta \phi = C \ S_m^2$ $\phi = \phi' - \Delta \phi$ $\Delta \lambda_1 = S_1 A \sec \phi$ $\log S_1 = \log S_m - \cos$ arc to sine $\log \Delta \lambda = \log \Delta \lambda_1 + \cos$ arc to sine $\lambda = \lambda (\text{central mer.}) - \Delta \lambda$

(over)

Geodetic positions from transverse Mercator coordinates

State_Fla.	East	_StationX	305,000 ,765,000
x	-195,000	_log S _s _log (1200/3937) _log (1/R)	9.48401583
x' ³ /(6(° ₀ ²) _g	7.83	_log S _m	4.77406969 - 627 4.77406342
log S _m ² log C log $\Delta \phi$	9.548127 1.152672 0.700799	_log A _log sec φ _log Δλ1	8.50937673 0.05897272 3.34241287 + 824
yø'(by interpolation)	29° 11′ 20″.9911	_cor. sine to arc _log △ λ	3.34242111
φ	- 5.0211 29°11′15′9700	_ 〉 (central mer.) _ △ 〉	36 39.9920 81° 36′ 39.9920

	λ
Φ	Δλ
Δφ	\(\central mer.)
ø'(by interpolation)	Δλ
у	log Δλ
	cor. sine to arc+
log $\Delta \phi$	$\log \Delta \lambda_1$
log C	log sec <i>\phi</i>
log S _m ²	log A
	log S ₁
S ₄	cor. arc to sine
x' ³ /(6f° _o ²)g	log S _m
x' (=x-C)	log (1/R)
C	
X	log S _g 9.48401583

Station _____

Explanation of form:

$$x' = x - C$$

$$S_g = x' - \frac{x'^3}{(6Q_o^2)_g}$$

$$S_m = \frac{1}{R} \left(\frac{1200}{3937}\right) S_g$$

R = scale reduction factor ϕ' is interpolated from table of y $\Delta \phi = C S_m^2$ $\phi = \phi' - \Delta \phi$ $\Delta \lambda_1 = S_1 A \sec \phi$ $\log S_1 = \log S_m - \text{cor. arc to sine}$ $\log \Delta \lambda = \log \Delta \lambda_1 + \text{cor. arc to sine}$ $\lambda = \lambda (\text{central mer.}) - \Delta \lambda$

PLANE COORDINATES ON TRANSVERSE MERCATOR PROJECTION

Station Yellow, 1935 State Ila East 81° 00' " λ (Central meridian) \$ 29° 16′ 10.″30 81 38 31.36 38 31.36 λ $\Delta\lambda$ (Central meridian- λ) 23/1."36 $\Delta \lambda$ (in sec.) 9.590342 3.36386759 log Sm²____ log Δλ_____ 1.154 122 909 log C*____ Cor. arc to sine__ 0.744464 3.36385850 log Δφ_____ $\log \Delta \lambda_1$ 9.94068052 log cos ϕ _____ 29° 16' 10".30 1.49062506 _colog A____ 4.79516408 · *5.55*22 _log S₁ _____ 15.8522 t_____690 Cor. sine to arc____ _log S_m_____ 4.79517098 _log 3937/1200___ 0.51598417_ Tabular difference) of y for 1" of ϕ' 2**555** log R_____ 5.31112960 _y (for min. of ø')__ _log S_g_____ 159333888 _log Sg³_____ y (for seconds of ϕ')_ 1,794,781.89 4.582/873 _log 1/6 %2 R2___ 0.5155761 $\log (S_g^3/6 f_o^2)_g$ log sin 🏄 + 💅 ____ 204,705.54 .Sg _____ log Δλ_____ 3.28 $-(S_g^3/6(c^2)_g \log \Delta \alpha_1$ 204,708.82 2,000,000.00 $\log (\Delta \lambda)^3$ 295,291.18 log F _____ log b _____ Δa_1 Δα ___

^{*} Take out C first for ϕ and correct for approximate ϕ' .

x = 2,000,000.00 + x'

$$x' = S_g + \left(\frac{S_g^3}{6 \rho_o^2}\right)_g$$

$$S_g = \frac{3937}{1200} S_m R$$

 $log S_m = log S_1 + cor.$ sine to arc

$$S_1 = \frac{\Delta \lambda_1 \cos \phi}{A}$$

 $\log \Delta \lambda_1 = \log \Delta \lambda - \text{cor. arc to sine}$

$$\left(\frac{S_g^3}{6\ell_0^2}\right)_g = \frac{S_g^3}{6\ell_0^2R^2}$$

$$\phi' = \phi + \Delta \phi$$

$$\Delta \phi = C S_m^2$$

$$\Delta \alpha = \Delta \lambda \sin \frac{\phi + \phi'}{2} + F(\Delta \lambda)^3$$

 S_m = distance in meters from point to central meridian

 S_{I} = distance in meters from point to central meridian reduced to sine

 $S_g = grid distance in feet from point to central meridian$

R = scale reduction factor

Values of y in minutes and tabular difference for one second, scale reduction factors, colog A, and log C are given in auxiliary tables.

REVIEW OF AIR PHOTOGRAPHIC SURVEY T-5132

DATA RECORD

Triangulation: 1935.

Photographs taken March 1935.

Field Inspection: February and August, 1937.

Planetable graphic control surveys: March - April 1937. Recoverable Stations of less than third order accuracy 1937.

Hydrographic surveys: 1937.

The field inspection was for the purpose of interpreting the photographs. The detail of T-5132 is of the date of the photographs except for the piling offshore which was taken from the 1937 graphic control surveys.

COMPARISON WITH RECENT GRAPHIC CONTROL SURVEYS.

CS 134 M (1937) 1:20,000.

General.

- (1) The graphic control survey is on a scale of 1:20,000 whereas T-5132 is on 1:10,000 scale.
- (2) The graphic control survey was made to locate signals, obstructions, aids to navigation. Very little shoreline or other detail is shown.
- (3) In general the aerial photographs show the detail clearly and the field inspection was adequate. T-5132 has been carefully compared to and corrected against the field photographs and notes, the above graphic control survey and the recent hydrographic survey. In case of any difference between the above graphic control survey and T-5132, the latter should now be taken as correct.
- (4) All detail on the above graphic control survey within the area of T-5132 is now shown on T-5132, except:
 - (a) Magnetic declination; (b) Temporary topographic stations; (c) location of Juniper Tide station (this appears on the contemporary hydrographic survey).

Detail.

(1) The short sections of shoreline shown on the graphic control survey agree within 10 meters with that shown on T-5132, which is sufficiently good considering the difference in scale between the surveys. There was some difference in the interpretation of the marsh H. W. L. which exceeded 10 m. but the representation on T-5132 has been accepted as correct.

- (2) The group of piling located 300 m. N. E. of triangulation station Juniper, 1935, is shown about 10 m. further south on T-5132 than on the G. C. S. These piles show clearly on the photographs and the representation of T-5132 has been accepted as correct.
- Recoverable H. & T. station Sed (d) had been transferred from the graphic control survey to T-5132, approximately 5 m. too far east. This has not been corrected on T-5132 because the difference is small and the correction is hard to make.

COMPARISON WITH PREVIOUS TOPOGRAPHIC SURVEYS.

T-2027 (1875) 1:80,000.

This is an inadequately controlled reconnaissance survey. It has been examined in connection with T-5132 but no detail comparison is considered any value. T-5132 is adequate to supersede.

COMPARISON WITH RECENT HYDROGRAPHIC SURVEYS.

H-6266 (1:20,000) 1937.

- (1) The above hydrographic survey is on 1:20,000 scale whereas T-5132 is on 1:10,000.
- (2) The shoreline on the hydrographic survey was transferred from the air photossurveys by projector. The accuracy of the transference was not checked in this review.
 - (3) Conflicts and omissions are as follows:
 - (a) Soundings at entrance to Silver Glen Spring Run conflict with the hyacinth fences shown on T-5132. Descriptive report says fences well located on T-5132.
 - (b) Above hyacinth fences, shown on the hydrographic sheet. They still existed in 1937, and according to page 5, descriptive report T-5132, they should be shown.
 - (c) Several fish net racks extend offshore 25-50 meters on T-5132. These have not been transferred to H-6266. They still existed in 1937.
 - (d) Certain piling as shown on H-6266 disagree 5-10 meters. T-5132 and graphic control survey correct. The graphic control survey was the source of the information, for these piling on the hydrographic sheet.

The above additions and corrections to H-6266 have been called to the attention of the hydrographic verifying unit.

COMPARISON WITH CHARTS.

Chart 508 (plate corrected to November 12, 1936) Scale 1:40,000.

The important changes to be made on this chart are noted on a section of the chart attached to this review.

REMARKS

Recoverable H. & T. Stations.

SED (d) is the only recoverable H. & T. station which appears on T-5132. It is filed under number T-5132. It was located by planetable and transferred to T-5132.

Landmarks.

No landmarks were recommended for the area covered by this sheet.

Changes.

The only changes made to this survey upon review were of a minor nature.

Datum.

There is a difference between the unadjusted N. A. 1927 datum as shown on this sheet and as given in the triangulation field positions. This is due to an approximate adjustment of -0.2 m. in longitude which was applied by the compilation party to the triangulation in this area.

Drafting.

The drafting was neat and the detailing complete; and the review and revision of this sheet was thereby facilitated.

Accuracy.

No statement of accuracy is given in the report, but from a review of the sheet it is believed that a probable error in geographic position of 8-10 meters obtains.

Additional Work.

This survey is complete and adequate for chart compilation.

Reviewed in office by - T. M. Price, May 9, 1938.

Examined and approved:

Chief, Section of Field Records

Chief, Section of Field Work

Chief, Division of Charts.

Chief, Division of Hydrography & Topography.