

FORM 564
Rev. Dec. 1933
DEPARTMENT OF COMMERCE
U.S. COAST AND GEODETIC SURVEY
R. S. PATTON. DERECTOR

DESCRIPTIVE REPORT
Air Photo
Topographic
Sheet No. T-5465
Hakestoopkin

State
LOCALITY
Staten Island
Staplaton to Fort Wedsworth

193 7

CHIEF OF PARTY

J.C. Partington Jr. H.& G.E.

U.S. GOVERNMENT PRINTING OFFICE: 183

Applied to Chart 285 Dec 22 1437 Chas Robush &

•

-

:

7

TOPOGRAPHIC TITLE SHEET

The Topographic Sheet should be accompanied by this form, filled in as completely as possible, when the sheet is forwarded to the Office.

Field No. <u>T-5465</u> REGISTER NO. T-5465 T5465 State New York General locality Staten Island Locality ... Stapleton to Fort Wedsworth and Vicinity 5/15/1935 5/22 , 1935 Photographs Scale 1:5000 Date of survey Vessel Photo Compilation Party # 25 Field Inspection - J.Rippstein
Surveyed by Radial Plot - C.R.Bush & E.L.Jones Inked by _____ C.R.Rush & E.L.Jones Heights in feet above _____ to ground to tops of trees Contour, Approximate contour, Form line interval ____ feet Instructions dated ________Merch 14 , 1934

9 P O

-Statistics-

AIR PHOTO COMPILATION, REGISTER NO. T-5465.

Photograph No. Date time high tide time hts.

V 196-201 (870N-8) 5/15/35 9:40a 5:25a 4.0'
V 218-220 (870N-8) 5/22/35 12:00 10:37a 4.2'

4:27p -0.3'

Scale Factor (1.000) R.C.Bolstad (Previously determined)

Projection ----- Ruling Machine ----- No date

Projection Checked ----- F. G. Erskine ---- " "

Control Plotted ----- C.R.Bush ---- " "
Control Checked ----- F.B.Kelley ---- " "

Radial Line Plot ----- C.R. Bush & E.L. Jones "

Radial Line Plot Checked --- E.L. Jones ----- May 6, 1937

Detail inked ----- C.R. Bush ---- No date E.L. Jones -----May 7 - 15,1937

Preliminary Review ----- J.C. Partington ---- June 7 - 8, 1937

Area of detail inked (land area) ---- 2.1 square statue miles
Area of detail inked (shoals) ---- 0 square statue miles

Length of shoreline (morethan 200m. from opposite shore --- 2.4 stat. mile Length of shoreline (docks) ----- 3.1 status miles.

Length of streets, roads, trails, railroads, etc. --- 29.3 statue miles

General location :

New York
Staten Island
Fort Wadsworth and Vicinity

Locality:

Datum:
North American 1927
Station: Fort Tompkins 2, 1868-1932 (N.Y.)
Fort Tompkins Z, Latitude 40° 36' 15.474"
Longitude 74° 03' 23.580"

477.3 meters 554.4 " (adjusted)

-Jh.P.

N. J. Grid \ x= 2,169,416.59 FT. y= 645,665.89 FT.

L.I. Grid { 4 = 1,984, 296.84 FT. 1.1. Grid { 4 = 138, 002, 84 FT.

Compiler's Report

Air Photo Topographic Sheet, Register No. T-5465

General Information.

The field inspection for the area covered by this sheet is part of a special report covering the northern section of Staten Island, submitted by Lt.(J.G.) R.C.Bolstad in 1935. Filed with Des. Report T 5107

This sheet was originally started by compilation party No. 12 Time?

in April 1935 but was discarded in November 1936 in favor of a machine made projection.

This sheet has been compiled from single lens photographs listed on page 2 of this report. Photographs V 196 to 201(870N-8) were taken approximately 2 hours before low water. Photographs V 218 to 220(870N-8) were taken approximately $1\frac{1}{2}$ hours after high water.

The photographs were taken by the U.S.Army Corp at Mitchell Field, Long Island, N.Y. with a special camera developed by the Fairchild Camera Corporation, 62-10 Woodside Ave., Woodside, New York City and with the cooperation of the Air Corp. This camera is known as the "K-7C" by the Army and as "K-7A" by the Fairchild Corporation.

The Army plane was piloted by Lieut. Cullen at an altitude very close to 15,000 feet; the photographer was Sergeant Cates. A 24 inch cone (focal length 24") was used which placed the original negatives on a scale of 1:7500. Contact prints were furnished the field party for inspection purposes and the original negatives were used to enlarge a set of office prints to a 1:5000 scale in the Washington Office. These office prints were furnished this party and were used to compile this sheet.

Control.

The radial plot is controled by 17 triangulation stations, all of which are from Lieut. R.W.Woodworth's 1930-33 triangulation except:

Fox Hills 1908

Fort Tomkins 2, 1908

Recoverable topographic stations previously located and U.S.E. coordinate stations were not used in controling the radial plot. They are shown on this sheet by circles $2\frac{1}{2}$ mm in diameter.

A recovery note on Form 526 is submitted for triangulation station Ft. Wadsworth Lighthouse. It is to be noted that the triangulation position of Fort Wadsworth Light is from Lieut. R.W.Woodworth's 1930 scheme and that no descrepancy was found with this station by the radial plot.

A recovery note on Form 526 is submitted for triangulation station Old Tank, located by Lieut. R.W. Woodworth in 1930. This tank has been dismantled except for a short section of the center pipe.

Reported to Geodesy and to Storm.

Triangulation station Fort Wadsworth, King's House, Green Cupola, 1930 now has a red cupola according to the air photo field inspection notes.

Triangulation Station Fort Wadsworth, Incinerator, Small Stack, 1930 is shown on the sheet but was not used in controling the radial plot due to insufficent ties to plot this station on the photographs.

Compilation.

(a) General.

The radial plot and the inking of detail was completed north of latitude 40° 37' 00", except on the extreme western limits, by C.R.Bush in the Washington Office. Celluloid templates were used in this area and according to notes left by Mr. Bush no difficulty was experienced with the radial plot.

The work on the sheet was resumed by Party #25 in Baltimore, Maryland in May 1937.

(b) Method.

The usual radial line method of plotting was used in the compilation of this sheet. The plot to the south and , also, on the western limits of the sheet is in general weak due to insufficent overlap. Where radial points are enciraled in blue (below latitude 40° 37' 00") three or more radials gave good intersections; where points are encircled in green they were located from either two radials or from three radials intersecting at a weak angle. The radial circles have been left on the back of the sheet for the aid of the reviewer.

(c) Adjustment of Plot.

No great difficulty was encountered in running the radial plot. No unusual adjustment of the plot was necessary.

(d) Recoverable Topographic Stations (Card Form 524).

Sixteen Card Forms 524 are submitted for the area covered by this sheet. Except for one station " Tower (Marine Hospital)", which was located by the photocompilation, all the remaining stations are U.S.E. stations with coordinate distances.

Geographic positions for all U.S.E. stations were computed from coordinate distances as furnished by the U.S.E. Dept. These positions are shown on the sheet. The computations in connection with these stations are to be found in the appendix.

Station P#3, U.S.E. has as its origin U.S.C. & G.S. triangulation station "Memorial Church".

All other U.S.E. stations shown on this sheet are on the Borough of Richmond Grid, which has its axes perpendicular and parallel to the meridian through U.S.C.& G.S. triangulation station "Bogart", with its origin so chosen as to make Bogart south 20,350.00 feet and west 20,250.00 feet.

16 Form 524 filed under 7 5465

Interpretation.

(e) Interpretation.

No attempt has been made to show street car tracks on this sheet. Double railroad tracks have been generalized and are shown by single tracks on the sheet with a note "double tracks" on the overlay.

The double full line has been used to show all first class roads and streets (curb to curb); the double dashed line to show second class roads; and the single dashed line to show trails.

An attempt has been made to show all buildings of any importance along the waterfront and a few of the more important buildings inland. The stereoscope has been used freely in determining the shapes of buildings.

Wrecks are shown in true size and shape by a dashed line since they are all being dismantled for firewood. All of the wrecks shown bare at high water.

The private drives leading to the U.S.Marine Hospital at Stapleton are not all shown since this hospital was partly under construction at the time the air photographs were taken.

No detail except the high water line is shown in Fort Wadsworth since this is a fortified area.

(f) Information from other sources.

- 1. Control from sources as stated on page 3 of this report.
- 2. Recoverable topographic stations as stated on page 4.
- 3. Names from sources as listed on Form M234 in the appendix.
- 5. Piling transferred from topographic Sheet 6381 (so labeled on the overlay)

Except as mentioned above all other information shown on the sheet was taken from the field inspection notes and the photographs.

(g) Names.

A list of geographic names shown on the sheet is given on Form M234 in the appendix of this report.

The names of the streets may be obtained from the Map of the City of New York, Board of Estimate and Apportionment.

Junctions.

This sheet is bounded on the east and south by The Narrows; on the southwest by photocompilation t-5108; and on the north along latitude 40° 37' 30" by T-5466. (1.5000)

Junction with T5466 satisfactory Junction with T5108 will be comparison with other Surveys. of 73 465 are available

The compilation was comparedddirectly with a bromide enlargement of Topographic Sheet # 6381, surveyed in 1934 by the party of Lieut. M.O. Witherbee. A very close agreement exists between the two sheets. A few of the larger descrepancies are as follows:

(a) The compilation shows Pier 22 to be extended in length from that shown on Sheet # 6381. The field inspection has included what appears to be the outline of a barge extending off the end of the dock. If this is a barge

it is believed that it is used as a floating dock. The field inspection notes have been followed on the compilation (see photograph V199-870N ,1:7500 scale). compilation accepted as correct. T.M. P. '37

(b) A descrepancy of approximately 10 meters exist in the position of the flag pole at the U.S.P.H.S. Quarantine Station Dock. The position of the dock agrees closely on both sheets. The position shown on the compilation was obtained from 3 radials, two of which are from the same direction. The flag pole is not a described station. (filed under 16381) Form 524 corrected to radial plot location which was checked.

In tersection strong on

photos. Note made on sheet T6381

Comparison with Charts.

Chart 285

Due to the difference of scale between this chart and the compilation no direct comparison was made. A visual comparison indicates the following descrepancies:

(a) Pier 22 extended on compilation from that shown on

chart. See last paragraph Pages. T.M. P. 37

(b) Numerous changes in the street system, such as, new streets, underpasses and etc.

(6) Small dock (Latitude 40 37' 00", Longitude 74 63.9') shown on the chart but not on the compilation.

Chart 369

A visual comparison indicates that the descrepancies are the same as on Chart 285. A few additional descrepancies in the area of Fort Wadsworth, not covered by Chart 285, are as follows:

(a) The location of the fog horn on the Quarantine Station Dock disagrees with respect to the location of the horn on the dock itself. The found to each offer in proper

(b) The small docks to the south of the Quarantine Station Dock shown on the chart are not included on the compilation. Not on photos. compilation accepted as

(c) Changes in the bulkhead and dock on the southeast side of Fort Wadsworth.

Landmarks.

The landmarks shown on Chart #369 are all in existence and should be shown on future charts. One additional Landmark "Tower (Marine Hospital)" is submitted on Card Form 524 and on Form 567. Reported to storm with form 567 t deletion of Tank (A Fox Hills Old Tank, 1930) reported. Recommendation for Further Surveys.

This sheet is believed to be complete in all detail of importance for charting and no additional surveys are required.

The probable error is not greater than 2 meters in

position of well defined objects along the waterfront and not greater than 5 meters for other detail.

Respectfully submitted, Edmind L. Jones Aid, U.S.C.& G.S.

Approved:

Remarks

Decisions

1		see T-638/
2		10 %
3_		
4		10 0
5		" "
6	Called "Narrows" on Chart NO. 369	<i>u</i>
7		
8		
9		
10		
11		
12		
13		
14		
15	•	
16		,
17		
18		
19	·	
20		
21	•	
22		
23		
24	· · · · · · · · · · · · · · · · · · ·	
25		
26		
27		
M 234		

	GEOGRAPHIC NAMES Survey No. T- 540			de de la Caracia	D Wall	E E	Make of the	and Cine	Was Wengin	N.S. A.	5 / S
	C		40 O	Oregion /	2. Wag	or de la filo	C MAN	o Cuide	Rand Met	7. igh	6. Cn.
_	Name on Survey	A,	B,	/c,	<u></u>	E	F	G	/н	/ K `	\angle
	Staten Island	(appid)		Ż	1			~			1
•	stapleton	(appd)		/	1	/		/			2
	<u>Clifton</u>	(appel)		1	/	1		V		1	3
	Rose bank	(arb#)		1	/	1		~			4
	Fort Wadsworth	(appid)		V	1	/		/			5
	The Narrows	541		/	/	1					6
	NewYork	(appid) 541 (appid) eppid									7
				,							8
			·								9
											10
[11
											12
											13
. [14
											15
	- · ·										16
											17
				•		,					18
			,								19
											20
											21
. [<u> </u>			22
											23
	and the second s	-									24
	Names underlined in red app	1711									25
	by 1/2 on 1/2	[/37]	·								26
											27

```
Computation of Geographic Coordinates From Plane Coordinates
Origin of coordinates: _
               ° 36' ( 223.9 m.)
                                        feet 6202.69m
               ° 06′ (1367.4 m.)
   Long.
                                           referred to the Zero
                                                            L or W. 20250 feet 6172.71
Name of station: City Mon. (Bay & Broad Sts.) USE
               M. or S. 11813. 26 feet = 3600.69 m.
   Coordinates:
               Z. or W. 9370.57 feet ≈ 2956.16 m.

    Latitude N. – S. coordinates /

                                                    Longitude
                                                                 E. - W. coordinates
                        feet = 2602.Dm.
                                                                       feet= 3316.0 1.
                                                   E. or ₩.
                                                   + or + seconds in meters = 13669 m.
                           =___223.9 m/
    + or 🗠 seconds in meters
    N. or S. of
                 - 40 ° 36' = 2825.9 m.
                                                                  74 ° 06'= 1949.7 m.
                                                   E. or Wf. of
                        ___L'=<u>__18.50.7</u>m/.
                                                                        2' = 28204 \text{m}
    From table +,or / ____
                                                   From table # or ~__
    Lat. (uncorrected) 40°37'
                                                   Longitude .
    Curvature
                    <u>40°37'</u>
   ★Latitude
                               <u>974.5</u> m.
Name of station: City Mon (Near NE Corner Marine Hospital) USE
               N. or S. 12,256.74feet ≈ 3735.86 ,m.
   Coordinates:
               Z. or W. 8,780,56 feet ≈ 2676,32 m.
                 N. - S. coordinates /
                                                    Longitude
                                                                E. - W. coordinates
                        feet = 2468 m.
                                                                       feet = 3495.9 m.
    N. or 🏟
                                                   E. or 🦈
    + or \neq seconds in meters = 223.9m.
                                                   + or + seconds in meters = 1366.9 m.
                    '40°36'= 26907m/
                                                               74
                                                                    °06'= 2129.0%
    N. or $. of
                                                   E. or W. of
                        2' = 2820.4m
    From table + or + ___
                                                   74 ° 04'
                    40°37
                              1840.0m.
                                                   Longitude _
    Lat. (uncorrected)
    Curvature
                    40° 37' 839 2 m
    ★Latitude
Name of station: City Man 446, USE
               M. or S. 12 914 05 feet = 3936.21 m.
               Z. or W. 8 241.92 feet = 25 12. 14 m.
                  N. - S. coordinates /
                                                    Longitude
                                                                 E. - W. coordinates
                        feet = 2266.5 \text{ m}.
                                                                       feet = 3660.1 m.
    N. or ₺.
    + or \neq seconds in meters = 223.9 m.
                                                   + or + seconds in meters = 1367.0 m.
                    40°36'= 2490.4"m.
    N. or S. of
                                                   E. or y₩. of
                                                                 74 °06'= 2293.1
                                                   From table + or --
    From table + or + ____
                        __l '= <u>l 850.7</u> m,
                                                                       2'= 2820.6 m.
    Lat. (uncorrected) 40 °37'
                                                  Longitude _
                                                                 _527.5′m.
    Curvature
                    <u>40°37′ 638.8</u>m.
   ★Latitude
```

Computed by FL Jones June 8 1937 by J.C.P. June 8, 1937

File with history slip of largest scale chart covering this area.

Computation of Geographic Coordinates From Plane Coordinates

File with history slip of largest scale chart covering this area.

```
Chart N
```

```
Origin of coordinates: __Booort (1885)
   Lat. 40
                ° 36' (223.9 m.)
                                         Coordinate value of origin ⋈. or S. 20350
                                                                                  feet 6202,69 L
   Long. 74.
                ° 06′ (1367.4 m.)
                                             referred to the Zero E. or W. 20250 feet 6172.21
Name of station: City Mon. # 169, USE
   Coordinates: N. or S. 14 467.76 feet = 4409.78 m
               F. or W. 7799.09 feet = 2224.77 m.
        Latitude N. - S. coordinates /
                                                       Longitude E. - W. coordinates
                          feet = 1792.9 m.
                                                                           feet = 3947.4 m.
                                                      E. or 18.
    🕅 or 👻
    + or \neq seconds in meters = \frac{223.9 \text{ m}}{100}.
                                                      + or \neq seconds in meters = \frac{1367.1}{m}.
                   <del>-40° 36' - 2016.8</del> m.
                                                      E. or W. of
                                                                   <del>-74 °06 ' - 2580.3</del>
    N. or $6. of
                                                      From table ≠ or ~ ___
    From table +,or + __
                                                                    74 ° 04
    Lat. (uncorrected) 40°37'
                                                      Longitude ____
    Curvature
   ★Latitude
Name of station: City Mon. # 1271 USE
   Coordinates: M. or S. 14320.55 feet = 4364.91 m.
                Ef or W. 706051 feet = 2152.05 m.
       Latitude N. - S. coordinates /
                                                                    E. - W. coordinates
                                                       Longitude
                         feet = 1837. 8 m.
                                                                          feet = 4-020.2 m.
                                                      E. or ₩
    N. or $6.
    + or \neq seconds in meters = 223.9 m:
                                                      + or + seconds in meters = 1367.1 in.
                     40° 36'= 2061.7 m.
                                                                     74 °06'= 2653.4' m.
                                                      E. or W of
    N. or $. of
    From table + or \neq ______1' = 1850.7 m/
                                                      From table + or - 7 '= 2820.7 m.
    Lat. (uncorrected) 40 ° 37'
                                                                     74 ° 04
                                 211.0 m.
                                                      Longitude _____
    Curvature
                                  209.9m.
   ★Latitude
Name of station: City Mon # 682, USE
                M. or S. 14-779.60 feet = 4-504.83 m.
   Coordinates:
                £. or W. 6553.36feet = 1997.47 m.
                   N. - S. coordinates
                                                                    E. - W. coordinates
                                                       Longitude
        Latitude
                                                                         feet= 4174.7 m.
                          feet = 1697.9 \text{ m}.
                                                      E. or 🗱
    N. or $.
     + or \neq seconds in meters = 223.9 m.
                                                      + or + seconds in meters = 1367.1 m.
                      40° 36' = 1921.8 m.
                                                      E. or N. of 74 ° 86 '=2807.6 ' m.
                                                      From table \neq or = _______ Z' = 2820.8 m.
                      From table + or + _
                                                     , Longitude _______ 74 ° 04
    Lat. (uncorrected)
     Curvature
    ★Latitude
                                   69.9 m.
```

Computed by <u>EL Jones June</u> 8,1937 193 V by J.C.P. June 8,1937

٠, ١

File with history slip of largest scale chart covering this area.

File with history slip of largest scale chart covering this area.

Computation of Geographic Coordinates From Plane Coordinates

ame of station: Sta. P# 3, USE Coordinates: # or S. 59, 372, 40 feet = 18 g or W.31 029,62 feet = 4	3,096.74m/					
Latitude N S. coordinates M. or S. feet = $18.096.7$ r + or \neq seconds in meters = $1.763.2$ r N. or S. of $40^{\circ}46' = 16.333.5$ r From table \neq or $= \frac{9'}{16.657.4}$ r Lat. (uncorrected) $40^{\circ}37'$ 323.9 r Curvature = $\frac{6.09}{40^{\circ}37'}$ $31.7.9$ r	n. n. n. n.	Longitude ∠. or W. + or ∮ secon ≰ or W. of From table + o Longitude	ds in met 73	feet = ers = °57' = 7' =	= 9457.8 = <u>606.2</u> =10064.0 = <u>9872.2</u>	_m _m _m
ame of station:		1				
Coordinates: N. or S. feet =	m.			•		
E. or W. feet =	m.					
Latitude N S. coordinates		Longitude	E	W. cr	ordinates	
N. or S. feet = r	n.	E. or W.		feet=		m
•	n.	+ or - second	ds in met		=	m
0 /	n	E. or W. of		o r=	=	m
From table + or'=n		From table + o	r –	·=	=	m
0 1	n.	Longitude		• .		m
	m.					- ···
*Latituden					•	
A 2011000			·=			
ame of station:						
Coordinates: N. or S. feet=	m.	,				
E. or W. feet =	۱ m.					
	!"		_	144		
Latitude N S. coordinates		Longitude				,
	m.	E. or W.		feet=	•	· m
	η.	+ or - secon	as in met	_	·	_ m
14, or 5, or = 1	m. 	E. or W. of		° '=	<u>.</u>	m
	n. 	From table + o		=	-	_ m
Lat. (uncorrected)	·	Longitude	·			_ m
Curvature =						
. *Latitude	m.					

10
- 22
2.
•
\sim
×д
נוכי
_6
88
6.2
0~
12.
5.
~~

DEPARTMENT OF COMMERCE U. S. COAST AND GEODETIC SURVEY

LANDMARKS FOR CHARTS

	STRIKE OUT ONE
BE CHARTED	ABENDENTERED

Baltimore, Md.

June 10, 1937 193

Chief of Party.

I recommend that the following objects which laxe (have not) been inspected from seaward to determine their value as landmarks, be charted on (Asichakhana) the charts indicated.

The positions given have been checked after listing.

GENERAL New York Statem Id.			POSITION	5			_		тяан:	
	LATITUDE	UDE	LONG	LONGITUDE		METHOD	DATE	ов сн ов сн	>	CHARTS AFFECTED
NAME AND DESCRIPTION	0	D. M. METERS	•	D. P. METERS	DATUM				0110	
Tower (Nerine Hospital)	40 37	626	74 04	694	NA 1927	Air Photo.	6/10/37	KKK		285 369 541
	•			,						
									<u> </u>	
								-	 	
			i i i i i i i i i i i i i i i i i i i					-	}	
									 	
			į [-	
								-	 	
			,							
									-	
This form shall be prepared in accordance with 1934 Field Memorandum, "LANDMARKS FOR CHARTS."	ice with 19	th 1934 Field M	[emorandu	ım, "LAN	DMARK	FOR CI	11 '	The d	ata sh	The data should be

Information under each column heading should be given.

considered for the charts of the area and not by individual field survey sheets.

U. S. GOVERNMENT PRINTING OFFICE

REVIEW OF AIR PHOTO COMPILATION T-5465

Data Record

Triangulation to 1930-32.

Recoverable stations of less than third order accuracy to 1937.

U. S. Engineers control stations established in 1931, accuraccy not known, treated as recoverable H & T stations. Photographs to May 1935.

Planetable graphic control surveys to October 1934. Field inspection to 1935.

The field inspection was for the interpretation of the photographs. Except for the piles, and the recoverable H & T stations taken from the 1934 planetable surveys, and the recoverable H & T stations taken from the U. S. Engineers surveys of 1931. The detail of this compilation is of the date of the photographs.

Comparison with Recent Graphic Control Surveys.

The following recent surveys are filed as topographic surveys but have been treated as graphic control surveys in this review:

T-6220a (1934) 1:10,000 T-6381 (1934) 1:10,000

T-6220a

The shoreline and the ruined bulkhead north of 40° 35.9' differ in position with the compilation 20 meters. The compilation is correct.

T-6381.

- (1) All triangulation stations are undated.
- (2) Five triangulation stations in area were omitted from sheet.
- (3) Shoreline and bulkhead ruins between latitude 40° 35.8° and 40° 36.2° differ a maximum of 20 m. from compilation. The latter is correct.
- (4) Piers 17, 18, 19 are 10 m. too wide at outer end and the slips between 16, 17, 18, 19 extend 8 m. too far inshore on the G. C. S.
- (5) Other differences as described on pages 5 and 6 of the descriptive report have been checked and the compilation accepted as correct.

General T-6381, 6220a.

- (1) The above planetable sheets have been carefully compared with the compilation, the photographs and recent hydrographic sheets. In general the field inspection is adequate and the photographs show the detail clearly. The compilation has been corrected against above sources of information and in case of any differences between the planetable sheets and the compilation; the latter should now be taken as correct.
- (2) This compilation is on a scale of 1:5,000, whereas the planetable surveys are on a scale of 1:10,000.
- (3) All detail on the above planetable sheets within the area of the compilation is now shown on the compilation, except:
 - (a) Detail proved in error or no longer existing as discussed above.
 - (b) Magnetic declination.
 - (c) Temporary topographic stations.

Comparison with Previous Topographic Surveys.

Except of those surveys treated above as graphic control surveys the following list gives the previous topographic surveys in the area covered by the compilation:

T-6	(1835)	1:5,000	T-1413a	(1875)	1:10,000
T-9	(1835+6)	1:10,000	T-1576	(1885)	1:10,000
T-490	(1855)	1:10,000	T-1710	(1886)	1:10,000
T=816	(1856)	1:10,000			*

Because of the many changes to be expected in an area of this character since the above surveys were made, only a general comparison was made between the above surveys and the compilation.

This compilation is adequate to supersede the portions of the former topographic surveys which it covers, except for bluffs and contours.

Comparison with Recent Hydrographic Surveys.

```
H-5607 (1934) 1:10,000
H-5736 (1934) 1:10,000
```

U. S. Engineers' blue prints Nos. 24059 to 24661 (1930)., //200

The shoreline of the above Coast and Geodetic Survey hydrographic surveys was taken from the recent graphic control surveys and therefore differs with this compilation in the same respects as discussed under the G. C. S. comparison. The differences are minor and no corrections were made to the hydrographic surveys which have been completed and applied to the charts.

There is no conflict between the soundings on the hydrographic surveys and the detail on the compilation.

No close comparison was made with the above U. S. Engineers' blue prints because of the difference in scale, difference in projection, and since no shoreline was shown on the blue prints. The soundings were not taken close enough to shore to cause conflict with the compilation.

Comparison with Charts.

Because the current large scale charts of this area were prepared largely from the 1934 topographic and hydrographic surveys, the differences discussed in connection with those surveys apply also to the charts. Additional differences are as follows:

Chart 541 (Edition June 11, 1937).

- (1) Along shore between latitude 40° 36.8' and 40° 39.0', additional wrecks should be added.
- (2) Extending from shore at latitude 40° 36.6', a ruined pier should be added.
- (3) Pier 22 should be extended as described on page 5 (last paragraph) of the descriptive report.
- (4) The short pier between piers 22 and 23 should have piles along its north side.
- (5) Fog horn on Quarantine wharf should be corrected in its relation to wharf to agree with compilation.
- (6) Latitude 40° 36.4', longitude 74° 04.4'. Landmark# "Tank" gone.
- (7) Several additional wrecks and rocks along shore to be added.

Chart 285 (Edition January 21, 1937).

For area covered, same corrections apply as for Chart 541.

Chart 369 (Edition April 17, 1937).

Same corrections apply as for chart 541.

Latitude 40° 36.0', longitude 74° 03.3' blukhead and wharf now ruined.

Remarks.

- (1) Landmarks and Aids to Navigation.
 - (a) Latitude 40° 36.4', Longitude 74° 04.4'

 Tank (Triangulation station Fox Hills, Old

 Tank, 1930). Delete from charts.
 - (b) Latitude 40° 37.3', Longitude 74° 04.5'
 Tower (Marine Hospital) Add to charts.
 - (c) Latitude 40° 36.8', Longitude 74° 03.5'
 Fog Horn. Change charted relation of aid to wharf.
- (2) Accuracy.

 The statement of accuracy given in the report appears correct.
- (3) Recoverable H & T stations.

 1 Form 524 filed under T-6381
 16 " 524 " " T-5465
- (4) Changes to Sheet upon Review.
 - (a) Fog Horn Quarantine wharf moved 6 m. S. W. to agree with field inspection notes.
 - (b) Latitude 40° 37.1' Long. 74° 04.0' catwalk & piles added

 " 40° 37.4' " 74° 04.3 added wreck above L.W.

 " 40° 36.1' " 74° 03.5' ruined pier extended 20 m.

 " 40° 37.0' " 74° 03.8' added wreck above L. W.
- (5) Wrecks have been shown with a dashed outlined whether above L. W. or above H. W. and the heights indicated by labels. Pier and bulkhead ruins have been indicated by a dashed line without distinction as to height or material.

Additional Work.

This survey is complete and adequate for chart compilation, except for the location of submerged pipe lines and cable crossings.

August 11, 1937.

REVIEW OF AIR PHOTO COMPILATION NO. T-5465

Chief of Party: J.C. Partington

Compiled by: E.L. Jones

Project: HT-175

Notes in red by T.M.P. 1937

Instructions dated: Mar. 14, 1934

The charts of this area have been examined and topographic information necessary to bring the chapts up to date is shown on this compilation. (Par. 16a, b, d, e, g and 1; 26; and 64)

- 2. Change in position, or non-existence of wharfs, lights, and other topographic detail of particular importance to navigation which affect/the chart, is discussed in the descriptive report. (Par. 26; and 66 g,n)
 - 3. Ground surveys by plane table, sextant, or theodolite have been used to supplement the photographic plot where necessary to obtain complete information, and all such surveys are discussed in the descriptive report. (Par. 65; and 66 d,e) No ground surveys. G.C.S. 76381 + 6220a by planetable.

 No ground surveys. U.S.E. stations located by theodolite probably.
 - Blue-prints and maps from other sources which were transmitted by the field party contain sufficient control for their applica-No blue-prints or maps transmitted. City map for street names filed in air photo section .
 - Differences between this compilation and contemporary plane , table and hydrographic surveys have been examined and rectified in the field before forwarding the compilations to the office and are discussed in the descriptive report. Discussed in descriptive report. and review
- The control and adjustment of the photo plot are discussed in the descriptive report. Unusual or large adjustments are discussed in detail and limits of the area affected are stated. (Par. 12b; 44; and 66 c,h,i)
- High water line on marshy and mangrove coast, is clear and adequate for chart compilation. (Par. 16a, 43, and 44)

Strike out paragraphs, words or phrases not applicable and modify those requiring it. Paragraph numbers refer to those in the Topographic Manual. Refer also to the pamphlet "Notes on the Compilation of Planimetric Line Maps from Five Lens Air Photographs."

- 8. The representation of low water lines, reefs, coral reefs and rocks, and legends pertaining to them is satisfactory. (Par. 36, 37, 38, 39, 40, 40)
- 9. Recoverable objects have been located and described on Form 524 in accordance with circular 30, 1933, gircular letter of March 3, 1933, and circular 31, 1934. (Par. 29, 30, and 57)
- 10. A list of landmarks was furnished on Form 567 and instructions in the Director's letter of July 16, 1934, Landmarks for Charts, complied with. (Par. 16d, e; and 60)
- 11. All bridges shown on the compilation are accompanied by a note stating whether fixed or draw, clearance, and width of draw if a draw bridge. Additional information of importance to navigation is given in the descriptive report. (Par. 16c)

 No bridges.
- 12. Geographic names are shown on the overlay tracing. The accepted local usage of new names has been determined and they are listed in the report, together with a general statement as to source of information and a specific statement when advisable. Complete discussion of place names differing from the charts and from the U.S.G.S. Quadrangles is given in the descriptive report, together with reasons for recommendations made. (Par. 64, and 66k)
- 13. The geographic datum of the compilation is N.A. 1927 and the reference station is correctly noted.
- 14. Junctions with adjoining compilations have been examined and are in agreement. (Par. 66j)
- 15. The drafting is satisfactory and particular attention has been given the following:
 - Standard symbols authorized by the Board of Surveys and Maps have been used throughout except as noted in the report.
 - 2. The degrees and minutes of Latitude and Longi- tude are correctly marked.

- 3. All station points are exactly marked by fine / black dots.
- 4. Closely spaced lines are drawn sharp and clear V for printing.
- Topographic symbols for similar features are of \checkmark uniform weight.
- 6. All drawing has been retouched where partially rubbed off.
- 7. Buildings are drawn with clear straight lines / and square corners where such is the case on the ground.

(Par. 34, 35, 36, 37, 38, 39, 40, 44, 42, 43, 44, 45, 46, 48)

- No additional surveying is recommended at this time. 16.
- 17. Remarks:

18. Examined and approved;

Remarks after review in office:

Aug. 10,1937

Examelined and approved:

Division of Hydrography and Topography.

PLANE COORDINATE GRID SYSTEM

Positions of grid intersections used for fitting the grid to this compilation were computed by Division of Geodesy and the computation forms are included in this report.

Positions plotted by H. D. K	EED, SR.
Positions checked by	
Grid inked on machine by <u>H. A</u>	P. REED. JR.
Intersections inked by \mathcal{H} .	REED, JR.
Points used for plotting grid: N. J. GRID	
x 2, 162, ovo FT. y 654, ovo FT.	x 2,166,000 y 646,000
x 2,170,000 y 654,000	<u>x</u>
x 2,162,000 y 642,000	<u>х</u>
x 2,170,000 y G42,000	<u>x</u>
Triangulation stations used for checking £ = 2,169,416.59 FT, 4:645,665.89 FT.	grid:
1. FT. TOWNKINS 2, 1868 5.	
26	
•	
4 8	

State New Je	rses	_Station	in Tersection
_x	5/165/000	_log S _g	5.20951067
	<u> 2 </u>	_log (1200/3937)	9.48401583
_x' (=x-C)	+162,000	_log (1/R)	1086
_x' ³ /(6(%) _g	- 1.620	_log S _m	4.69353736
_S _g	161,998.380	_cor. arc to sine	<u>- 432 </u>
		_log S ₁	4.69353304
_log S _m ²	9387075	_log A	8.50910251
log C	1.337924	log sec ø	0.11978053
_log \(\Delta \phi \)	0.724999	_log Δλ ₁	3.32241608
		_cor. sine to arc	+ 751
y	654,000	_log Δ λ	3.32242359
ø'(by interpolation)	40°37′ 43.6306	Δλ	2100.9881
Δφ	<i>5</i> .3088	(central mer.)	74° 40 "
.	40 37 38.3218	L _Δ λ	+ 35 00.9881
		λ	74 04 59.0119V

Station Grid intersection

	0.17	<u> </u>	7 5 5 5 11 11 11 11 11 11 11 11 11 11 11
x	2,170,000	log S _g	5.23044414
		log (1200/3937)	9.48401583
_x' (=x-C)	+170,000	_log (1/R)	1086
x' ³ /(6°,2°) ₈	1.872	log S _m	4.71447083
_S _k	169,998,128	_cor. arc to sine	476
•		log S ₁	4.71446607
_log S _m ²	9.428942	log A	8.50910251
~ log C	1.337924	log sec	0.11977956
_log $\Delta \phi$	0.766866	log Δλ ₁	3.34334814
	 	_cor. sine to arc	+ 827
y	654,000	_log Δλ	3.34335641
ø'(by interpolation)	40° 37 43.6306	Δλ	2204.7351
_ Δφ	<u> </u>		74° 40 "
	40 37 37.7845	Δλ	36 44.7351
	·	λ	74 03 15.2649

Explanation of form:

$$x' = x - C$$

$$S_g = x' - \frac{x'^3}{(6 \rho^2)_g}$$

$$S_m = \frac{1}{R} \left(\frac{1200}{3937}\right) S_g$$

PLANE COORDINATES ON TRANSVERSE MERCATOR PROJECTION

* 40 37 38.3218 $\Delta\lambda$ (Central meridian- λ)

		("
		Δλ(in sec.)	2/00.988/
log Δλ	3.32242359	log S _m ²	9,387075
Cor. arc to sine	751	log C*	<u>1.337924</u>
log Δλ ₁	3.322416 08	log \(\Delta \phi \)	0.724999
log cos <i>\p</i>	9.88021947		
colog A	1.49089747	φ	40°37′38″3218
log S ₁ :	4.69353302		+ 5.3088
Cor. sine to arc	+432_	φ'	43.6306
log S _m	4.69.353734		
log 3937/1200	0.51598417	Tabular difference)	101.19733
log R		of y for 1" of ϕ'	
 log S _g	5.20951065	y (for min. of ø')	649,584.70
log S _g ³	15.6285320	y (for seconds of ϕ')	+ 4,415.30
log 1/6 %2R2	4.5810213	у	654,000.00
log (S _g ³ /6 (° _o ²) _g	0.2095533	•	
, i	1/1/000073	log sin # # # # #	
Sg	161,998.373	log \(\Delta \)	
$\left[\left(S_{g}^{3} / 6 \left(c_{o}^{2} \right)_{g} \right]$	16199999	log Δα ₁	
x′	·' '	log (A)) ³	
х	2,000,000.00	log (Δλ) ³ log F	
^		log b	
		Δa_1	"
· · · · · · · · · · · · · · · · · · ·		b	·
		_ Δα	"
		Δα	0 , "

^{*} Take out C first for ϕ and correct for approximate ϕ' .

$$x = 2,000,000.00 + x'$$

$$x' = S_g + \left(\frac{S_g^3}{6 \rho_o^2}\right)_g$$

$$S_{\text{g}} = \frac{3937}{1200} \; S_{\text{m}} \, R$$

 $log S_m = log S_1 + cor.$ sine to arc

$$S_1 = \frac{\Delta \lambda_1 \cos \phi}{A}$$

 $\log \Delta \lambda_1 = \log \Delta \lambda$ — cor. arc to sine

$$\phi' = \phi + \Delta \phi$$

$$\Delta \phi = C S_m^2$$

$$\Delta \alpha = \Delta \lambda \sin \frac{\phi + \phi'}{2} + F(\Delta \lambda)^3$$

 $S_m = distance$ in meters from point to central meridian

 S_1 = distance in meters from point to central meridian reduced to sine

 $S_g = grid distance in feet from point to central meridian$

R = scale reduction factor

Values of y in minutes and tabular difference for one second, scale reduction factors, colog A, and log C are given in auxiliary tables.

PLANE COORDINATES ON TRANSVERSE MERCATOR PROJECTION

INATES ON TRANSVERSE MERCATOR PROJECTION

State Yew Jersey Station Frid Futersection

\[
\lambda \text{(Central meridian)} \quad \frac{74}{74} \quad \frac{76}{03} \quad \frac{15.2649}{2649} \] 40 37 37.7845 $\Delta \lambda$ (Central meridian- λ)

			11
		Δλ(in sec.)	2204.7351
log \(\Delta \)	3.34335641	log S _m ²	9428942
Cor. arc to sine	827	log C*	1.337923
_log \(\Delta \)_1	3.34334814	log	0.76686\$
log cos <i>\phi</i>	9.88022044		
colog A	1.49089749		40° 37′ 37′.7845
log \$ ₁ :	4.71446607	Δφ	+ 5.8461
Cor. sine to arc	+ 476	φ'	43.6306
log S _m	4.71447083		
iog 3937/1200	0.51598417_	Tabular difference)	101.19733
log R		of y for 1" of ø' ∫	
log S _g	5.23044414	y (for min. of ø')	649,584.70
log Sg ³	15.6913324	y (for seconds of ϕ')	+ 4,415.30
log 1/6 % R2	4.5810213	y	654,000.00
$\log (S_g^3/6 (c_o^2)_g$	0.2723537		
	169,998.129	log sin # + 6'	
Sg	1.872	log Δλ	
$\left[-\left(S_{g}^{3}/6 \left(c^{2}_{o}\right)_{g}\right]$		log Δα ₁	
x′	170,000.00	1 (4 >)3	
	2,000,000.00	log (Δλ) ³	
XX	1 2,10,00	log F	
		$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$	"
		b	
		_Δα	"
		_ Δα	0 ' "

^{*} Take out C first for ϕ and correct for approximate ϕ' .

x = 2,000,000.00 + x'

$$x' = S_g + \left(\frac{S_g^3}{6 \rho_o^2}\right)_g$$

$$S_g = \frac{3937}{1200} S_m R$$

 $log S_m = log S_1 + cor.$ sine to arc

$$S_1 = \frac{\Delta \lambda_1 \cos \phi}{A}$$

 $\log \Delta \lambda_1 = \log \Delta \lambda$ — cor. arc to sine

$$\left(\frac{{{S_g}^3}}{6\,{{\ell_0}^2}}\right)_{\!g}\,=\,\frac{{S_g}^3}{6\,{{\ell_0}^2}\,{R^2}}$$

$$\phi' = \phi + \Delta \phi$$

$$\Delta \phi = C S_m^2$$

$$\Delta \alpha = \Delta \lambda \sin \frac{\phi + \phi'}{2} + F(\Delta \lambda)^3$$

 S_m = distance in meters from point to central meridian

 S_1 = distance in meters from point to central meridian reduced to sine

 $S_g = grid distance in feet from point to central meridian$

R = scale reduction factor

Values of y in minutes and tabular difference for one second, scale reduction factors, colog A, and log C are given in auxiliary tables.

GEODETIC POSITIONS FROM TRANSVERSE MERCATOR COORDINATES

	_ Station	·
2,162,000,00	$\log S_{\sigma}$	5. 20951067
2,	log (1200/3937)	9.48401583
+ 162,000.00	log (1/R)	1086
1.62	$\log S_m$	4 69353736
161,994.34	cor. arc to sine	<u> </u>
	$\log S_1$	4.69353304
15,62854503	log A	8, 5 09 10 2 2 3
4.5810213	log sec φ	0,11945194
0.2095663	$\log \Delta \lambda_1$	3,32248721
	cor, sine to arc	+ 751
9.38707472	log Δλ	3,32245472
1,338091	Δλ	2101,4161
0,725166		
155 100 00		
o / "	> />	7.4 44
·		- 35 01.8467
		7.4 04 58 1834
40 33 11,0467	^	,4478
	2,162,000,00 2, + 162,000,00 - 1.62 - 161,998.38 - 15,62854503 - 45810213 0,2095663 - 9,38707472 1,338091 0,725166 - 4000.00 - 40 38 23,1573 - 5,3109	2, 162, 000, 00 $\log S_{\pi}$ $\log (1200/3937)$ $\log (1/R)$ $\log S_{\pi}$ $\log $

Explanation of form:

$$x'=x-K$$

$$S_g = x' - \frac{x'^3}{(6\rho_g^2)_g}$$

$$S_m = \frac{1}{R} \left(\frac{1200}{3937} \right) S_q$$

R=scale reduction factor

 ϕ' is interpolated from table of y

$$\Delta \phi = C S_m^2$$

$$\phi = \phi' - \Delta \phi$$

$$\Delta \lambda_1 = S_1 A \sec \phi$$

 $\log S_1 = \log S_m - \text{cor. arc to sine}$

 $\log \Delta \lambda = \log \Delta \lambda_1 + \text{cor.}$ are to sine

 $\lambda = \lambda$ (central mer.) $-\Delta \lambda$

134.74

GEODETIC POSITIONS FROM TRANSVERSE MERCATOR COORDINATES

State V. J.		NOITATE	<u>.</u>
x	2,170,000.00	$\log S_{\it o}$	5, 23044414
K	2,000,000.00	log (1200/3937)	9.48401583
x' (=x-K)	+ 170,000.00	log (1/R)	1086
$x'^3/(6\rho_o^2)_g$		$\log S_m$	4.71447043
S ₆	T 169,998,13	cor, are to sine	_ 476
		$\log S_t$	4.71446607
3 log x'	15.69134676	$\log A$	8 50910 223
$\log 1/(6\rho_{\sigma}^{2})_{g}$	4.5810213	$\log\sec\phi$	0.11945097
$\log x'^3/(6\rho_{\sigma}^2)_g$	0.2723691	$\log\Delta\lambda_{\scriptscriptstyle \rm I}$	3.34341927
		cor. sine to arc	+
$\log S_m^2$	9.42 4 9 4 1 66	log Δλ	3.34342754
log C	1.33 8091	Δλ	2205,0962
log Δφ	0,767033		<u> </u>
	4		
<i>y</i>	658 000.00		0 1 11
ϕ' (by interpolation)	40 38 23.1573	λ (central mer.)	74 40
$\Delta \phi$	_ 5,8443	Δλ	36 45.0962
φ:	40 38 17,3090	λ	74 03 14,9639
•	/0678mn	1	70.05 mn

Explanation of form:

$$x' = x - K$$

$$S_g = x' - \frac{x'^3}{(6\rho_g^2)_g}$$

 $S_{\scriptscriptstyle m} {=} \frac{1}{R} {\left(\frac{1200}{3937} \right)} \, S_{\scriptscriptstyle d}$

R=scale reduction factor

 ϕ' is interpolated from table of y

$$\Delta \phi = C S_m^2$$

$$\phi = \phi' - \Delta \phi$$

$$\Delta \lambda_1 = S_1 A \sec \phi$$

 $\log S_1 = \log S_m - \text{cor. arc to sine}$

 $\log \Delta \lambda = \log \Delta \lambda_1 + \text{cor. arc to sine}$

 $\lambda = \lambda$ (central mer.) $-\Delta \lambda$

GEODETIC POSITIONS FROM TRANSVERSE MERCATOR COORDINATES

r	2,162,000.00	log S.	5, 20 95 10 67
K	2]	9.48401583
x' (=x-K)			
			_
S _s	161,998.38	cor. arc to sine	- 432
		$\log S_1$	4.69353304
3 log x'	15,62854503	log A	4.50910334
$\log 1/(6\rho_{\theta}^2)_{g}$	4.58/0213	log sec φ	0.11956645
$\log x'^3/(6\rho_{\sigma}^2)_{\sigma}$	0,2095663	log Δλ ₁	3,32220283
		cor. sine to arc	+ 750
$\log S_m^2$		log Δλ	مخزم ا
log C	4 4 6 -	Δλ	2099,956\$
log Δφ	6725166	-	
 	642 000.00		
•	n) 46 35 45.0501	λ (central mer.)	74 40
Δφ		Δλ	- 34 59.950
φ	40 35 39.7342	λ	74 05 00,043

Explanation of form:

$$x'=x-K$$

$$S_g = x' - \frac{x'^3}{(6\rho_o^2)_g}$$

$$S_m = \frac{1}{R} \left(\frac{1200}{3937} \right) S_g$$

R=scale reduction factor

 ϕ' is interpolated from table of y

$$\Delta \phi = C S_m^2$$

$$\phi = \phi' - \Delta \phi$$

$$\Delta \lambda_1 = S_1 A \sec \phi$$

 $\log S_1 = \log S_m - \text{cor. arc to sine}$

 $\log \Delta \lambda {=} \log \Delta \lambda_1 {+} \mathrm{cor.}$ are to sine

 $\lambda = \lambda$ (central mer.) $-\Delta \lambda$

GEODETIC POSITIONS FROM TRANSVERSE MERCATOR COORDINATES

State N.J.		STATION	
xK	2,170,000.00	$\log S_{\sigma-}$ $\log (1200/3937)$	9.48401583
x' (=x-K)	+ 170,000.00 - 1.87		4.71447083
S_{g}	+ 169,998.13	•	- 476
3 log x'	15.69/3 4676	$\log A$	8.509103 4
$\log 1/(6\rho_o^2)_g \underline{\hspace{1cm}}$ $\log x'^3/(6\rho_o^2)_g \underline{\hspace{1cm}}$	6. 2723 681	log sec φ	3.34311742
$\log S_m^2$	1,		3.343/256
log C	0,766364	Δλ	2203,5647
y	642 000, 41		0 / "
ϕ' (by interpolation) $\Delta \phi = 0$	<u>40 35 45 0501</u> - <u>5,4393</u>	-	- 36 43.56 4
φ	40 35 39.2109	λ	74 03 1643 59

56.82 mm

77. 31 mm

Explanation of form:

$$x'=x-K$$

$$S_{g} = x' - \frac{x'^{3}}{(6\rho_{g}^{2})_{g}}$$

$$S_{m} = \frac{1}{R} \left(\frac{1200}{3937} \right) S_{g}$$

R=scale reduction factor

 ϕ' is interpolated from table of y

$$\Delta \phi = C S_m^2$$

$$\phi = \phi' - \Delta \phi$$

$$\Delta \lambda_1 = S_1 A \sec \phi$$

 $\log S_1 = \log S_m - \text{cor. arc to sine}$

 $\log \Delta \lambda = \log \Delta \lambda_1 + \text{cor.}$ are to sine

 $\lambda{=}\lambda$ (central mer.)— $\!\Delta\lambda$

GEODETIC POSITIONS FROM TRANSVERSE MERCATOR COORDINATES

STATE V. J.	STATION
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Δλ 35 57.5466

117.26 mm

36,88 mm

Explanation of form:

$$x'=x-K$$

$$S_g = x' - \frac{x'^3}{(6\rho_o^2)_g}$$

$$S_m = \frac{1}{R} \left(\frac{1200}{3937} \right) S_q$$

R=scale reduction factor

 ϕ' is interpolated from table of y

$$\Delta \phi = C S_m^2$$

$$\phi = \phi' - \Delta \phi$$

$$\Delta \lambda_1 = S_1 A \sec \phi$$

 $\log S_1 = \log S_m - \text{cor.}$ are to sine

 $\log \Delta \lambda = \log \Delta \lambda_1 + \text{cor.}$ are to sine

 $\lambda = \lambda$ (central mer.) $-\Delta \lambda$

PLANE COORDINATE GRID SYSTEM

Positions of grid intersections used for fitting the grid to this compilation were computed by Division of Geodesy and the computation forms are included in this report.

Positions plotted by H. D. KEED, JR.
Positions checked by
Grid inked on machine by H. D. REFO. JR.
Intersections inked by H. D. REED, JR.
Points used for plotting grid: Long (SLAND GRID)
x 1,976,000 FT. x 1,980,000 y 146,000 FT. y 140,000
x 1,986,000 FT x y 146,000 FT.
x 1, 976, 000 y 134, 000
x 1, 986, 000 y 134, 000
Triangulation stations used for checking grid: X = 1,984,296,847. 4 = 138,00 z ,84 FT.
1. FT. TOMPKINS, 2, 1868 5.
26.
7.
4

State L. Fa	land	_Station <u> </u>	intersection.
x	1,976,000	R _b +A	24,462,545.30
c	<u> 2</u>		146,000
x' (= x-C)	-24,000	_R _b + A - y	24,316,545.30
tan θ	o , , , , ,	_R	
	"	V	146,000
$\underline{-\frac{\theta}{\ell}}(=\Delta\lambda)_{-}$		v''	
		_v'	145,988.16
X(central mer.)_	74° 00′ ″		
- Δ λ	5 11.2448	d (by interpolation)	40° 37′ 34″.4305_

Station Grid intersection

x	1,986,000.	R _b +A	24462
C $x' (= x-C)$	- 14,000	R _b + A - y	24,316,545.30
	<u> </u>		, ,
θ	0 , "	R	
$\frac{\theta}{\ell} (= \Delta \lambda)$		y	146,000 - 4.03
	74° 00′ ″	y'	145,995.97
λ (central mer.)_ – Δ λ	3 01.559 <u>5</u>		40 °37′ 34′.5076
λ	74 03 01,559 <u>5</u>		

$$\tan \theta = \frac{x - C}{R_b + A - V}$$

$$\Delta \lambda = \frac{\theta}{\ell}$$

$$\lambda = \lambda$$
 (central mer.) $-\Delta \lambda$

7.4

05 11.2448

$$R = (R_b + A - y) \sec \theta$$

$$y'' = 2R \sin^2 \frac{\theta}{2}$$
$$y' = y - y''$$

C is constant added to x' in computation

of coordinates

 $R_{\,\mbox{\scriptsize b}}$ is map radius of lowest parallel

A is value of y $^{\prime}$ for R $_{\text{b}}$; in most cases it is zero

Plane coordinates on Lambert projection

					Frid Intersection
		$\phi = 4^{\circ} 3^{\prime}$	34.4305	$\lambda = 74^{\circ}$	05 11.2448
		Tabular difference			
				,	
R (for mi	n. of ø)	24,320,041.51	y' (for mi	n. of ø)	142,503.79
_Cor. for se	ec. of ϕ	- 3 <i>484.37</i>	II	c. of <i>\phi</i>	+ 3,484.37
_R		10:10 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	l_v <u>′</u>		145,988.16
		,	y" (=2R s	$\sin^2\frac{\theta}{2})$	+ 11.84
θ (for min	n. of λ)	0 "	v	2 /	146,000.00
	ec. of λ	_ 7.35502	II .		
_θ		3 23.57965	11		° 1 ' 47.789 ¢ 25
θ"	For machine computation	"	2	For machine computation	
			$\log \theta''$		
$\log heta''_{}$			colog 2		9.69897000
_S for .θ			S for $\frac{\theta}{2}$		
.log sin <i>⊕</i>	sin <i>0</i>	0009869818	$\log \sin \frac{\theta}{2}$	sin 😤	.000 4934910
_log R			_	$R \sin \frac{\theta}{2}$	12,000.000
_log x'			$\log \sin^2 \frac{\theta}{2}$	R sin ² $\frac{\theta}{2}$	5.922
_X'	R sin θ	- 24,000.00	li –		
-8	3111 (2,000,000.00	II .		0.30103000_
v		1,976,000	11		0.50105000
_X		1, 170,000	Ting A		
	<u> </u>	L	U		L

 $x = 2,000,000.00 + R \sin \theta$

 $y = y' + 2R \sin^2 \frac{\theta}{2}$

y' = the value of y on the central meridian for the latitude of the station

 $S = log \ of \ ratio \ for \ reducing \ arc \ expressed \ in \ seconds \ to \ sine$ (see log tables)

R, y', and θ are given in special tables

Plane coordinates on Lambert projection

		State L. Isi	land !	Station 2	rid Intersection
		$\phi = 4^{\circ} 3^{\circ}$	34.5076	$\lambda = 74^{\circ}$	03 01.5595
		Tabular difference			
				· ,	
R (for mir	n. of ø)	24,320,041.51	y' (for mir	n. of ϕ)	142,503.79
Cor. for se	c. of <i>ø</i>	- 3492.17	Cor. for se	c. of <i>ø</i>	+ 3492.17
_R		- <u>3492.17</u> 24,316,549.34	y <u>'</u>		145 99596
<u> </u>			y <u>''</u> _(=2R s	$\sin^2\frac{\theta}{2}$)	+ ' 4,03
$_{\sim}\theta$ (for min	o. of λ)	- ° 1 ' 57.7347			145,999.99
Cor. for se	c. of \(\lambda			·	<u> </u>
_θ		/ 58.75482	<u>θ</u>		° 0 59.37741
-θ''	For machine computation	11		For machine computation	
			_log θ' <u>'</u>		
-log θ''			colog 2		9.69897000
_S for .θ			S for $\frac{\theta}{2}$		
log sin $ heta$	sin θ	,0005757396	log sin ∉	$\sin \frac{\theta}{2}$,000 2878698
log R				R sin $\frac{\theta}{2}$	7,000,00
_log x'			$\log \sin^2 \frac{\theta}{2}$	R sin ² g _	7,000,00 2.015
_X′	R sin <i>⊕</i> _	- 14,000.00			
		2,000,000.00 <u></u>	ll ,		0.30103000
_X		1,986,000	log y''		
		, , , , , , , , , , , , , , , , , , ,			

 $x = 2,000,000.00 + R \sin \theta$

 $y = y' + 2R \sin^2 \frac{\theta}{2}$

 $y'=% \frac{1}{2}\left(\frac{y'}{y'}\right) =\frac{1}{2}\left(\frac{y'}{y'}\right) +\frac{1}{2}\left(\frac{y'}{y'}\right) =\frac{1}{2}\left(\frac{y'}{y'}\right) +\frac{1}{2}\left(\frac{y'}$

 $S = log \ of \ ratio \ for \ reducing \ arc \ expressed \ in \ seconds \ to \ sine$ (see log tables)

R, y', and θ are given in special tables

FORM NO. 742
DEPARTMENT OF COMMERCE
U. S. COAST AND GEODETIC SURVEY
Ed. May 1025

GEODETIC POSITIONS FROM LAMBERT COORDINATES

STATE 4. I. STATION

x/_/	976,000,00	R_b+A	24, 462, 545, 30
4		y	150 000.00
x' = x - C	24,000.00		24,312,545.30
$\log (x-C) - \frac{4 \cdot 3}{4 \cdot 3}$		$\frac{\theta}{2}$ (in secs.)	01' 41".4046
$\log (R_b + A - y) - 7.3$	8583643	$\log \frac{\theta}{2}$	
$\log \tan \theta$ ζ . φ	943 4681	$\log S_{-}$	
0	<u>° 63 23 6/319</u> 203 <u>6 319</u>	$\log \sin \frac{\theta}{2}$	6.6933 4750
$\log \theta \ (\theta \text{ in secs.})$ 2.3		$\log \sin^2 \frac{\theta}{2}$	3 38649500
$\log l = 9.8$			0.3010300_
$\log \frac{\theta}{I}$ 2.49			<u> </u>
		log R*	1.6735554
$\Delta\lambda \ (=\frac{\theta}{l})$		log y"	7.8.7.3333
λ (central mer.)	74 "	y"	
-Δλ <u>τ</u>	05 11.2960	R_b+A-y	24, 3/2, 545,30
λ	4 05 11.2960	y"	+
		R	24,312557,15
	53.09 mm		
			17-6
		y	15000000
		y <u>"</u>	- 11.85
		y'	14,9,988.15
		φ (by interpolation)	40 38 13,956

86.09 mm

$$\tan \theta = \frac{x - C}{R_b + A - y}$$

 $\Delta \lambda = \frac{\theta}{l}$

 $\lambda = \lambda$ (central mer.) $-\Delta\lambda$

$$y'' = 2R \sin^2 \frac{\theta}{2}$$

y'=y-y''

C is constant added to x' in computation of coordinates

 R_b is map radius of lowest parallel

A is value of y' for R_b ; in most cases it is zero ϕ is interpolated from table of y'

^{*} Use (R_b+A-y) as an approximate value of R and later correct this value when R is obtained below.

STATE4	<u> </u>	STATION	
<i>x</i>	1,986,000.00	R_b+A	24, 462, 545.30
C		y	-
x' (=x-C)	'	$R_{\mathfrak{b}} + A - y_{\underline{\hspace{1cm}}}$	24,312,545.30
$\log (x-C)$	4.14612804	$\frac{\theta}{2}$ (in secs.)	
$\log (R_b + A - y)_{-}$		$\log \frac{\theta}{2}$	59,38718
$\log \tan \theta$	7.3858 30 43 6.76029761	log S	
θ	0/ 58.7744	$\log\sinrac{ heta}{2}$	6,45925299
	114."77436		· · · · · · · · · · · · · · · · · · ·
$\log \theta$ (θ in secs.)_	2,07472269	$\log \sin^2 \frac{\theta}{2}$	2,91850598
$\log l$	<u>-</u>	log 2	0.3010300
~ ^	2,25909043	log R*	7.38583043
$\Delta\lambda \left(=\frac{\theta}{l}\right)$	181.58937	log y"	0 66536641
. <i>t'</i>		y"	4.63
λ (central mer.)	74 "		
_Δλ	· · · · · · · · · · · · · · · · · · ·	$R_b + A - y_{-}$	24,312,545,30
λ	74 63 61.5894		+4.03
	1	R	24,3/2,549,33
	7.47 mm		
			4-6
		y	750,000.00
		y <u>"</u>	- 4.03
		y'	149 995 97

 $\lambda = \lambda$ (central mer.)— $\Delta\lambda$

 $y'' = 2R \sin^2 \frac{\theta}{2}$

φ (by interpolation)

C is constant added to x' in computation

of coordinates

 R_b is map radius of lowest parallel

A is value of y' for R_b ; in most cases it is zero

^{*} Use $(R_b + A - y)$ as an approximate value of R and later correct this value when R is obtained below.

N.J. LI STATE___ STATION.

x 1,976,000.00 C 2, x' (=x-C) 24,000.00	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{\frac{\theta}{2} \text{ (in secs.)}}{\log \frac{\theta}{2}}$ $\log \sin \frac{\theta}{2}$ $\log \sin \frac{\theta}{2}$ 6.69306086
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Δλ 05 (1.09/3 λ 74 05 (1.09/3) 52./6 ^{mm}	R_b+A-y 24, 462, 545, 30 y'' + 11.84 R 24, 462, 557, 14
	y 134,000.00 y" - 11.84 y' 133,988,16
	φ (by interpolation) 40 35 35.570

 $\tan\theta = \frac{x - C}{R_b + A - y}$

 $\lambda = \lambda$ (central mer.) $-\Delta\lambda$

 $y'' = 2R \sin^2 \frac{\theta}{2}$

C is constant added to x' in computation

of coordinates

 R_b is map radius of lowest parallel

A is value of y' for R_b ; in most cases it is zero ϕ is interpolated from table of y'

36.11 mm

* Use $(R_b + A - y)$ as an approximate value of R and later correct this value when R is obtained below.

STATE	<u> </u>	STATION	
		<u> </u>	
x	1,986,000.00	R_b+A	24, 462, 545.30
C	2,	y	134 000.00
x' (=x-C)	l ·	$R_{\mathfrak{d}} + A - y$	24,328,545,30
$\log (x-C)$	4.1461 2804	$\frac{\theta}{2}$ (in secs.)	
$\log (R_b + A - y) -$	7,3861/6/4	$\log \frac{\theta}{2}$	59,34812
log tan θ	6.76001190		
θ	0/ 58.69624	$\log \sin \frac{\theta}{2}$	6.45896788
	114.69"624	2	
$\log \theta \ (\theta \text{ in secs.})$	2.07443698	$\log \sin^2 \frac{\theta}{2}$	2 91793576
- '	9.81 563226		0.3010300
$\log l$	1 -	log 2	
	2,25840472	log R*	7.38611614
$\Delta\lambda \ (=\frac{b}{l})$	181.4699	log y"	0.60508190
	7°4 "	y"	4.03
λ (central mer.)	1		
-Δλ	03 01.4699		24,328,545,30
λ	74 03 01.4699	y"	+ 4.03
		R	24,328,549,33
	6.91 mm		
		y	134,000,00
_		y"	- 4,03
		y'	133,995,97
		φ (by interpolation)	40 35 35,9305
			40 00 00,7000

36.59 mm

 $\tan\theta = \frac{x - C}{R_b + A - y}$

 $\Delta \lambda = \frac{\theta}{l}$

 $\lambda \approx \lambda$ (central mer.)— $\Delta \lambda$

 $y'' = 2R \sin^2 \frac{\theta}{2}$

y'=y-y''

C is constant added to x' in computation

of coordinates

 R_b is map radius of lowest parallel

A is value of y' for R_b ; in most cases it is zero

^{*}Use (R_b+A-y) as an approximate value of R and later correct this value when R is obtained below.

STATE 4.2.	STATION	
1,980,000.00	R_b+A	24, 462, 545.30
		140,000.00
C_{-} Z_{-} Z_{-	R_b+A-y	24, 322, 545, 36
log (x-C) 4.30/03000	$\frac{\theta}{2}$ (in secs.)	1' 24.80399
$\log (R_b + A - y)$ 7,38600902	$\log \frac{\theta}{2}$	
log tan 0 6.91502098	log S	
02 49.60788	$\log\sin\frac{\theta}{2}$	6,61398610
169,60788		
log θ (θ in secs.) 2.22944601	$\log \sin^2 \frac{\theta}{2}$	3,22797220
log 1 9.81 563 226	log 2	0.3010300
$\log \frac{\theta}{h}$ 2 4/3 4/3 75	log R*	7. 38600902
$\Delta\lambda \left(-\frac{\theta}{7}\right)$ 254,3067	log y"	0.91501122
	y"	8.22
λ (central mer.) 7°× "		
-Δλ <u>04 /9.3067</u>	R_b+A-y	24,322,545,30
74 04 193067	y"	+
	R	24,322,553,52
90.78 mm		
	y	140,000.00
	y"	- 4.22
	y'	139,991.78
	φ (by interpolation)	40 36 35,1777
		31.94 m

 $\tan \theta = \frac{x - C}{R_b + A - y}$

 $\Delta \lambda = \frac{\theta}{I}$

 $\lambda = \lambda$ (central mer.) $-\Delta\lambda$

 $y''=2R\sin^2\frac{\theta}{2}$

y'=y-y''

C is constant added to x' in computation

of coordinates

 R_b is map radius of lowest parallel

A is value of y' for R_b ; in most cases it is zero

^{*} Use $(R_b + A - y)$ as an approximate value of R and later correct this value when R is obtained below.

Plane coordinates on Lambert projection

		State J. F	dand.	Station 🗦	ort Tompkins 2(7)
		φ <u>= 40° 36</u>	15.474	$\lambda = 74^{\circ}$	03 23.580
	-	Tabular difference	e of R for 1'	of $\phi = 10$	1.19983
			11		
$R ext{ (for min. of } \phi ext{)}$		24,326,113.50	y^r (for min. of ϕ)		I
_Cor. for se	ec. of <i>\phi</i>		Cor. for sec. of ϕ		
_R		24,324,547.53	y <u>'</u>		137,997.77
			$y''_{-}(=2R \sin^2 \frac{\theta}{2})$		+ 5.07
$_{-}\theta$ (for min. of λ)		– ° 1 ′57.′73478	y		138,002.84
Cor. for sec. of λ		- <u>15.42326</u>			
-θ		- 2 13.15804	<u>\theta} 2 </u>		° 1' 06.57902
θ''	For machine computation	"		For machine computation	<u></u>
			$\log \theta''$		
_log θ''			colog 2		9.69897000
_S for .θ			S for #		
log sin 0	Lsin €	.0006455683	$\log \sin \frac{\theta}{2}$	$-\sin\frac{\theta}{2}$.000 32 27842
log R			11	R sin $\frac{\theta}{2}$	7,851.58
-log x'			$\log \sin^2 \frac{\theta}{2}$	_R sin² θ	2.534
_x′	R sin <i>θ</i>	- 15,703.16	II		
		2,000,000.00_	log 2		0.30103000
_x		1,984,296.84	log y''		

 $x = 2,000,000.00 + R \sin \theta$

R, y', and θ are given in special tables

 $y = y' + 2R \sin^2 \frac{\theta}{2}$

y' = the value of y on the central meridian for the latitude of the station

 $S = log \ of \ ratio \ for \ reducing \ arc \ expressed \ in \ seconds \ to \ sine$ (see log tables)