5471-2

DEPARTMENT OF COMMERCE
U.S. COAST AND GEODETIC SURVEY

State Virginia

LOCALITY

5472

Albemarle & Chasapeake Canal

East Section

North Landing River

5471

Albemarle & Chasapeake Canal

North Landing River

5471

Albemarle & Chasapeake Canal

East Section

193 6

CHIEF OF PARTY

U.S. GOVERNMENT PRINTING OFFICE: 1994

T-5472 applied to Chart 830, april 8, 1937 P.L.J.
T-5471 " " " " , Sans 3, 1937 P.L.J.
Officed to Cht 512, Jane 14 1938 1850

\$

TOPOGRAPHIC TITLE SHEET

The Topographic Sheet should be accompanied by this form, filled in as completely as possible, when the sheet is forwarded to the Office.

Field No.....

	•	REGISTER NO	5471	T5471	
State	Virgin				
General loc	ality <u>South</u> Albemarle	east sectio	n 🥌) Wes!	
Locality	Albemarle	& Chesaneak	e Canal	Photos, Sept	50=+10 1985
Scale 1:10	0,000 Dat	e of survey	July -	Nov.	19.36
Vessel	Party # 18		••••••	·	
Chief of pa	rt y S	B. Grenoll			
Surveyed by	Compiled b	v S. B. Gre	nell		
Inked by	S. B. Gr	enell			
Heights in	feet above	t o	ground	to tops of	trees
Contour, Ap	proximate con	tour, Form	line int	erval 	feet
Instruction	s dated	March 18			19,36.
Remarks:		·			
•					

NOTES ON COMPILATION

One copy of this form must accompany each chart from beginning to completion. The last draftsman, whose name appears on this form, is responsible for it and all personnel will endeavor to keep these forms up to date and correctly posted. This form is very important inasmuch as the final Descriptive Report of the Chart compiled is based upon the information contained herein.

SHEET NO. 5471
Acc. No. 717 1 10 Acc. No. 718 PHOTO NO. 39 TO PHOTO NO. 51
BY START FINISH
ROUGH RADIAL PLOT S. B. Grenell
SCALE FACTOR(.97) S. B. Grenell
SCALE FACTOR CHECKED J. A. Giles
PROJECTION Washington Office
PROJECTION CHECKED S. B. G.
CONTROL PLOTTED S. B. G.
CONTROL CHECKED J. A. G.
COPOGRAPHY TRANSFERRED none
SMOOTH RADIAL LINE PLOT S. B. G.
ADIAL LINE PLOT CHECKED S. B. G.
DETAIL INKED S. B. Grenell
REA DETAIL INKED 34.8 sq. Statute Miles
ENGTH OF SHORELINE OVER 300 Statute Miles
.ENGTH OF SHORELINE UNDER 300 m. 9.2 Statute Miles
ENERAL LOCATION Eastern Virginia
OCATION Albemarle Chesapeake Canal - North Landing River
DATUM STATION GREAT BRIDGE 1931 Latitude 36 43 12.787 (394.2) Longitude 76 14 26.189 (649.9)
x 2,662.184.00 FT.

Datum: N. A. 1927

148, 182.08 FT.

TOPOGRAPHIC TITLE SHEET

The Topographic Sheet should be accompanied by this form, filled in as completely as possible, when the sheet is forwarded to the Office.

Field No. T5472 REGISTER NO. 5472
REGISTER NO. 5472
State Virginia
General locality South-east section
Locality Albemarle & Chesapeake Canal East Section Compiled Photos, Sept. 1935
Compiled Compiled Scale 1:10,000 Date of survey July - Nov. 19.36
Vessel Party # 18
Chief of party S. B. Grenell
Surveyed by S. B. Grenell
Inked by S. B. Grenell - R. A. Earle
Heights in feet aboveto ground to tops of trees
Contour, Approximate contour, Form line intervalfeet
Instructions dated March 18, 19 36
Remarks:

NOTES ON COMPILATION

One copy of this form must accompany each chart from beginning to completion: The last draftsman, whose name appears on this form, is responsible for it and all personnel will endeavor to keep these forms up to date and correctly posted. This form is very important inasmuch as the final Descriptive Report of the Chart compiled is based upon the information contained herein.

SHEET, NO. 5472	
Acc. No. 738 Acc. No. 740 PHOTO NO. 108 TO PHOTO NO. 156	
BY START FINISH	
ROUGH RADIAL PLOT S. B. Grenell	
SCALE FACTOR(.97) S. B. Grenell	
SCALE FACTOR CHECKED J. A. Giles	
PROJECTION Washington Office	
PROJECTION CHECKED S. B. Grenell	
CONTROL PLOTTED S. B. Grenell	
CONTROL CHECKED J. A. Giles	
TOPOGRAPHY TRANSFERRED S. B. Grenell POPOGRAPHY CHECKED J. A. Giles	
SMOOTH RADIAL LINE PLOT S. B. Grenell	
RADIAL LINE PLOT CHECKED S. B. Grenell	
R. A. Earle (roads, streams, detail along stream DETAIL INKED S. B. Grenell (all other detail)	s)
AREA DETAIL INKED 33.1 sq. Statute Miles	
LENGTH OF SHORELINE OVER FORK m Statute Miles	
LENGTH OF SHORELINE UNDER STOCK m. 16.1 Statute Miles	
GENERAL LOCATION Virginia, Eastern Part.	
LOCATION Albemarle & Chesapeake Canal - North Landing River	
DATUM STATION NORTH LANDING 1931 Latitude 36 43 05.247 (16 Longitude 76 06 02.383 (59	1.7) 9.1)
V coordinate: 2 702 0	10 21

X coordinate: 2,703,210.31 FT. 19

The traverse mentioned on the opposite page was not permanently marked and no records were turned in to this office. Traverse points are marked on the photographs and the positions are pricked on the celluloid compilation.

12 J.J.

REPORT OF COMPILATION

FOR

AIRPHOTO COMPILATIONS NOS. 5471 & 5472

Norfolk, Va., 1936

This report is written to cover two adjoining compilations of the same scale factor which were radial plotted as a unit. The general characteristics of both sheets are the same.

CONTROL:

After the field inspection of existing control was completed, it was apparent that it would be necessary to establish additional control in order to run through a fixed plot. In this connection, two short, closed traverses were run in with theodolite (6 D & R) and tape. Traverse # 1 on compilation 5471 between triangulation stations Pleasant & Turnpike closed with an error of less than three (3) m., which was adjusted. Traverse #2 on compilation 5472 between Pungo and North Landing, closed with an error of less than two (2) meters and was adjusted.

With the combination of traverse and triangulation control, it was possible to run through fairly well fixed plots with the assurance that compilation in the critical areas was well controled and accurate.

RADIAL LINE PLOTS:

The preliminary scale plot showed the photographs to be of approximately the same scale for the four flights which covered the two compilations, so a mean scale factor of 0.97 was adopted. This made it possible to join the two sheets togather while running the radial plot and thus take advantage of all control in the overlapping flights along the sheet junction.

The photos for compilation 5471 were new and were flown with a camera in good adjustment. The photos for compilation 5472, however, were flown over two years ago and were taken with a camera known to be out of adjustment. For this reason it was advisable to run the overlap or junction plots togather so that a careful check could be made. This junction area had very little control except the traverse but the plots went through fairly well the first try and subsequent adjustments developed a system of excellent intersections in the flight overlap and assured a smooth, even plot.

ADJUSTMENT OF PHOTOGRAPHS:

The individual photographs varied considerably in scale and most of them were badly tilted - especially on compilation # 5471, so that adjustment ofdetail was a tedious job. This was particularily so due to the great amount of fine detail such as ditch systems and roads, but the radial points were excellent and by intersecting for additional, break-down points it was possible to run through a smooth, accurate compilation. The photo detail was generally clear.

Accuracy

The probable error of location of 2 to 3 mm. noted on the opposite page applies to the north limits of these compilations.

With the traverses mentioned on page 1 of this report, the control along the canal and north to lat. 36° 44' on T-5471 is ample and the accuracy of location of well defined detail is accepted as within 1 millimeter. From lat. 36° 44' northward, there was practically no control. The photo plots which are in a north-south direction do not close on control above 36° 43' and could be checked only by tying in with the plots of the adjacent compilation T-5149 which was well controlled.

On T-5471 the detail above lat. 36° 46' will not be published except for a small portion at the west edge.

On T-5472, the detail above 36° 45' will not be published except for a small portion at the west edge.

13.9. Jones

the first of the second

FIELD INSPECTION:

The field inspection was carried on by the writer and one draftsman and was easily accomplished by truck. It was impossible to penetrate the heavily wooded areas to determine the amount of land which is normally flooded and since this feature does not show on the photothgraphs it was impossible to show by the conventional water-line symbol the area which is actually swamp.

All heavily wooded areas in this section of the country are classed locally as "swamp" because most of the higher ground has been cleared for cultivation. All of the land is very low and flat and the fields are closely ditched for drainage. Much of the so-called "swamp" is actually dry a greater part of the year altho there is considerable cypress growing in the areas adjacent to the w waterways. The bulk of the timber is gum with a mixture of pine, oak, maple, beach, et c. on the higher ground.

INTERPRETATION OF DETAIL:

The photographs were quite clear and with the use of the stereoscope it was possible to identify and locate most of the large buildings and special structural features. The ditch systems show up clearly in the cultivated areas because of the growth of grass and how brush lining the banks. There were no unusual features and no special symbols used.

COMPARISON WITH CONTEMPORARY SURVEYS:

The only comparison possible was made with planetable sheet #6362, R. P. Eyman, 1934, showing the upper reaches of the North Landing River which appeared on compilation 5472. The check was excellent where the shoreline was rodded in on definite points and islands and the mouths of tributary streams but there were numerous, small discrepancies between rodded points where the topographer had sketched the general outline.

ACCURACY AND COMPLETENESS:

The compilations are complete in every detail as well as can be determined from the photographs. Although the control is not well distributed, the excellent intersections obtained on the radial plot lead me to believe that the maximum error in controlled areas should not exceed two millimeters and in less well controlled areas, three millimeters.

JUNCTIONS:

All junctions with adjoining compilations are complete.

LANDMARKS: No list of landmarks submitted.

COAST PILOT NOTES: None submitted.

BRIDGE DATA: Data for all bridges is shown on the overlay sheets as

taken from the publication; List of Bridges over Navigable Waters of the U. S. - 1934 and verified for subsequent change with the U. S. E. D., Norfolk, Va.

PHOTOGRAPH NUMBERS:

Compilation 5471

Compilation 5472

Acc. No. 717 1 to 10 718 39 to 51

Acc. No. 738 37 to 56 740 108 to 122

Respectfully submitted,

S. B. Grenell,

Chief of Party # 18.

Decisions

Remarks

Survey No. T-54	71	/ 2	1 / 01/2 1/2 / 01/20)		E Wat	7 BO	, chally	A K	*/
		Char V	Cherry J.S. Wax	troughtury	Or loca Mod	Side of	Mos McHolly	13 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	y ,
Name on Survey	A	B	C D	E	O F	° G	Н	<u>/</u> K	_
Albemarle & Chesapeake Canal	1 -447	i i	1 1						1
Great Bridge V	1					greathria	ve /		2
Great Bridge V -camden Mill North Landing R	217 5	49							3
North Landing R	-appd	on s	5.472						4
									5
									ε
									7
									8
		ļ <u>.</u>				<u> </u>		<u> </u>	10
		<u> </u>	1 .					<u></u>	11
									12
								<u> </u>	13
							ļ		14
		<u> </u>						-	15
						_			16
		ļ			_				17
						_	 		18
		ļ						<u> </u>	19
						-			20
		<u> </u>			-		<u> </u>		21
		<u> </u>					ļ		22
		ļ		_		_	-	<u> </u>	23
		 					<u> </u>	<u> -</u>	24
								 	25
Names underlined in red approve	l I	<u> </u>	ļ		_				20
by SHE on 3/9/37							1		2

	GEOGRAPHIC NAMES Survey No. 7-54	72	tho. Of	endra sir	o b diadra	SO LOS	Or loca Mod	O. Carido o	por production of the state of	7. Sign	\$ /
	Name on Survey	S A	80. \ Q	Sterilor Sterilor	2. g ./4	or or E	or or F	, o · ´ / . G	20rd H	2,2 K	
					/ 						1
•	Haynes Cr.	appd GNS appd									2
	North Landing	appid	_								3
	Albemarle and	appid									4
	Princess Anne	1						1		1	. 5
	North Landing River	appid	,								6
٠											7
											8
											9
			 -								10
							 				11
A											12
							†				13
							 				14
		-									15
		<u> </u>									16
											17
											18
							ļ				19
								•			
				<u> </u>		 					20
											21
		 					ļ <u>-</u>				22
•							<u> </u>				23
							!				24
	Names underlined in red approve	ן ו		· · · · · · · · · · · · · · · · · · ·		<u> </u>	<u> </u>	 			25
	by SHE on 3/9/37	-	<u></u>		<u> </u>						26
	1777										27

REVIEW OF AIR PHOTO COMPILATIONS T-5471 and T-5472 Scale 1:10,000

Data Record

- 1. Triangulation to 1934
- 2. Photographs to September 1935
- 3. Theodolite and tape traverses, 1936
- 4. Field inspection to November 1936

The field inspection indicated that there were no considerable changes in detail and that detail on the compilations is that of the date of photographs.

Comparison with Graphic Control Survey

T-6362a (Jan. 1935), 1:10,000

- c 472

The compilation, and T-6362a are in agreement except for slight differences in the location of shoreline between rodded points on the graphic control sheet.

Numerous snags, tree stumps, and piles which were shown on T-6362a were added to the compilation along the North Landing River.

There were slight differences in the position of sunken barges at lat. 36° 41.9', long. 76° 04.6'. After checking with the photographs, the position shown on the compilation was proved correct.

There are no contemporary hydrographic surveys in the area covered by this compilation.

Comparison with Topographic Surveys

T-1387 (1873), 1:20,000 T-3250 (1912), 1:10,000

There have been slight changes in the locations of shorelines of numerous streams. The alignment of the Albemarle and Chesapeake Canal has been improved by eliminating several bends in the North Landing and Elizabeth Rivers where these streams are included in the Intracoastal Waterway.

Changes in structural features have taken place in the locks near Great Bridge.

This compilation is complete and adequate to supersede the above topographic surveys for charting.

Comparison with Charts 452 (1:20,000) and 1227 (1:80,000)

These compilations show additional roads and a number of small changes in shoreline as compared with the present charts.

No landmarks have been recommended by the compilation party.

General

A statement of the accuracy of location and additional control has been included in the descriptive report opposite page 2.

All geographic names were added to the compilation in this office.

The field inspection reports that numerous drainage ditches in this area are essential for cultivation and are characteristic of this locality. The land is low and cultivation is possible only in the areas which are a few feet higher than the surrounding swamp and which can be drained into the swamp. These ditches are often covered by brush and hedges and are not apparent on the photographs but the Chief of Party states that these brush and hedge lines are invariably over a drainage ditch.

March 24, 1937.

H. Selleter

REVIEW OF AIR PHOTO COMPILATION NO. 5471

Chief of Party: J.B. Grenell

compiled by: S.B. Grenell

Project: 10/1/ #18

Instructions dated: Mar. 18,1936

1. The charts of this area have been examined and topographic information necessary to bring the charts up to date is shown on this compilation. (Par. 16a, b,c,d,e,g and i; 26; and 64)

- 2. Change in position, or non-existence of wharfs, lights, and other topographic detail of particular importance to navigation which affect the chart, is discussed in the descriptive report. (Par. 26; and 66 g,n)
 - 3. Ground surveys by plane table, sextant, or theodolite have been used to supplement the photographic plot where necessary to obtain complete information, and all such surveys are discussed in the descriptive report. (Par. 65; and 66 d,e)

 Traverse for photo control
- 4. Blue-prints and maps from other-sources which were transmitted, by the field party centain sufficient control for their application to the charts. (Par. 28)
- 5. Differences between this compilation and contemporary plane, table and hydrographic surveys have been examined and rectified in the field before forwarding the compilations to the office and are discussed in the descriptive report.

 No contemporary Surveys for comparison
- 6. The control and adjustment of the photo plot are discussed in the descriptive report. Unusual or large adjustments are discussed in detail and limits of the area affected are stated. (Par. 12b; 44; and 66 c,h,i)
- 7. High water line on marshy and mangrove coast is clear and adequate for chart compilation. (Par. 16a, 43, and 44)

NOTE: Strike out paragraphs, words or phrases not applicable and modify those requiring it. Paragraph numbers refer to those in the Topographic Manual. Refer also to the pamphlet "Notes on the Compilation of Planimetric Line Maps from Five Lens Air Photographs."

- 8. The representation of low water lines, reefs, coral reefs and rocks, and legends pertaining to them is satisfactory. (Par. 36, 37, 38, 39, 40, 41)
- 9. Recoverable objects have been located and described on Form 524 in accordance with circular 30, 1933, circular letter of March 3, 1933, and circular 31, 1934. (Par. 29, 30, and 57)
- 10. A list of landmarks was furnished on Form 567 and instructions in the Director's letter of July 16, 1934, Landmarks for Charts, complied with. (Par. 16d, e; and 60)
- 11. All bridges shown on the compilation are accompanied by a note stating whether fixed or draw, clearance, and width of draw if a draw bridge. Additional information of importance to navigation is given in the descriptive report. (Par. 16c)
- 12. Geographic names are shown on the overlay tracing. The accepted local usage of new names has been determined and they are listed in the report, together with a general statement as to source of information and a specific statement when advisable. Complete discussion of place names differing from the charts and from the U. S. G. S. Quadrangles is given in the descriptive report, together with reasons for recommendations made. (Par. 64, and 66k)
- 13. The geographic datum of the compilation is NH 1927 and the reference station is correctly noted.
- 14. Junctions with adjoining compilations have been examined and are in agreement. (Par. 66j)
- 15. The drafting is satisfactory and particular attention has been we given the following:
 - 1. Standard symbols authorized by the Board of Surveys and Maps have been used throughout except as noted in the report.
 - 2. The degrees and minutes of Latitude and Longitude are correctly marked.

- 3. All station points are exactly marked by fine black dots.
- 4. Closely spaced lines are drawn sharp and clear for printing.
- 5. Topographic symbols for similar features are of uniform weight.
- 6. All drawing has been retouched where partially rubbed off.
- 7. Buildings are drawn with clear straight lines and square corners where such is the case on the ground.

(Par. 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48)

- No additional surveying is recommended at this time. 16.
- 17. Remarks:

18. Examined and approved;

19. Remarks after review in office:

Reviewed in office by: H. M. Schleiter 3/20/37

Examained and approved:

Chief. Division of Charts

Chief, Division of Hydrography

and Topography.

REVIEW OF AIR PHOTO COMPILATION NO. 5472

Chief of Party: 5. B. Grenell

Compiled by: R.A. Earle

Instructions dated: Mar. 18.1936

1. The charts of this area have been examined and topographic information necessary to bring the charts up to date is shown on this compilation. (Par. 16a, b,c,d,e,g and i; 26; and 64)

- 2. Change in position, or non-existence of wharfs, lights, and other-topographic-detail of particular importance to navigation which affect the chart, is discussed in the descriptive report. (Par. 26; and 66 g,n)
 - 3. Ground surveys by plane table, sextant, or theodolite have been used to supplement the photographic plot where necessary to obtain complete information, and all such surveys are discussed in the descriptive report. (Par. 65; and 66 d.e)
 Traverse for photo control
 - Blue-prints and maps from other sources which were transmitted by the field party contain sufficient control for their application to the charts. (Par. 28)
 - 5. Differences between this compilation and contemporary plane , table and hydrographic surveys have been examined and rectified in the field before forwarding the compilations to the office and are discussed in the descriptive report.
 - 6. The control and adjustment of the photo plot are discussed in the descriptive report. Unusual or large adjustments are discussed in detail and limits of the area affected are stated. (Par. 12b; 44; and 66 c,h,i)
 - 7. High water line on marshy and mangrove coast is clear and adequate for chart compilation. (Par. 16a, 43, and 44)

Strike out paragraphs, words or phrases not applicable and modify those requiring it. Paragraph numbers refer to those in the Topographic Manual. Refer also to the pamphlet "Notes on the Compilation of Planimetric Line Maps from Five Lens Air Photographs."

- 8. The representation of low water lines, reefs, coral reefs and rocks, and legends pertaining to them is satisfactory. (Par. 36, 37, 38, 39, 40, 41)
- 9. Recoverable objects have been located and described on Form 524 in accordance with circular 30, 1933, circular letter of March 3, 1933, and circular 31, 1934. (Per. 29, 30, and 57)
- 10. A list of landmarks was furnished on Form 567 and instructions in the Director's letter of July 16, 1934, Landmarks for Charts, complied with. (Par. 16d, e; and 60)
- 11. All bridges shown on the compilation are accompanied by a note stating whether fixed or draw, clearance, and width of draw if a draw bridge. Additional information of importance to navigation is given in the descriptive report. (Par. 16c)
- 12. Geographic names are shown on the overlay tracing. The accepted local usage of new names has been determined and they are listed in the report, together with a general statement as to source of information and a specific statement when advisable. Complete discussion of place names differing from the charts and from the U.S.G.S. Quadrangles is given in the descriptive report, together with reasons for recommendations made. (Par. 64, and 66k)
- 13. The geographic datum of the compilation is NA 1927 and the reference station is correctly noted.
- 14. Junctions with adjoining compilations have been examined and are in agreement. (Par. 66j)
- 15. The drafting is satisfactory and particular attention has been given the following:
 - 1. Standard symbols authorized by the Board of Surveys and Maps have been used throughout except as noted in the report.
 - 2. The degrees and minutes of Latitude and Longi- tude are correctly marked.

- 3. All station points are exactly marked by fine black dots.
- 4. Closely spaced lines are drawn sharp and clear for printing.
- 5. Topographic symbols for similar features are of uniform weight.
- 6. All drawing has been retouched where partially
- 7. Buildings are drawn with clear straight lines and square corners where such is the case on the ground.

(Par. 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48)

- 16. No additional surveying is recommended at this time.
- 17. Remarks:

SE., 50

18. Examined and approved;

Chief of Party

Remarks after review in office:

Reviewed in office by:

A. A. Schletter 3/24/37 B.J. Jones

Examained and approved:

Chief, Division of Hydrography

and Topography.

PLANE COORDINATE GRID SYSTEM

Positions of grid intersections used for fitting the grid to this compilation were computed by Division of Geodesy and the computation forms are included in this report.

Positions plotted by H.D. REED. JR.

Positions checked by	•
Grid inked on machin	e by H.O. REED, JR.
Intersections inked	by H. D. REED, JR.
nts used for plotting grid:	
x 2,655,000 ET y 170,000 ET	x 2,670,000 y 169,000
x 2,690,000 y 170,000	<u>x</u> <u>y</u>
x 2,690,000 y 145,000	<u>x</u> <u>y</u>
x 2,655,000 Y 145,000	<u>x</u>
angulation stations used fo	r checking grid:
1. Great Bridge, 1931	
2.	
3.	7.
4	8

State Va. South	Station Grid intersection A
01410	

x	2,655,000	_R _b +A	27,811, 312.71
	+ 655,000	y R _b + A — y	<u> </u>
tan θ		R	•
θ $\left\{ -\frac{\theta}{2}\right\}$	0 ' "		170,000
$\frac{\partial}{\partial \ell} (= \Delta \lambda)$		y*'	- 7759.49
∖(central mer.)_	78° 30′ ″	y <u>'</u>	162,240.51
Δλ	2 14 11.7746 76 15 48.2254		36° 46′ 44.2225
_ λ	16 13 40,2234		

Station Grid intersection B

x	2,690,	000	R _b +A	170,000
x' (= x-C)	+ 690,	000	R _b +A — y	27,641,312.71
tan θ	0 ,	"	R	
$\frac{\theta}{\ell} (= \Delta \lambda)$		"	y" -	170,000 - 8,610.77
λ (central mer.)_	78° 3 <i>0</i> ′	"	у'	161,389.23
Δ λ	2 21 76 08	21.8479 38.1521	_ø (by interpolation)	36° 46 35.8050

$$\tan \theta = \frac{x - C}{R_b + A - y}$$

$$\Delta \lambda = \frac{\theta}{\ell}$$

.
$$\lambda = \lambda$$
 (central mer.) $= \Delta \lambda$
 $R = (R_b + A - y) \sec \theta$

$$y'' = 2R \sin^2 \frac{\theta}{2}$$

$$y' = y - y''$$

C is constant added to $\mathbf{x'}$ in computation

of coordinates

 $R_{\mathfrak{b}}$ is map radius of lowest parallel

A is value of y' for $R_{\,b}$; in most cases it is zero

 ϕ is interpolated from table of y'

State Va. Smith	main Haid	intersection	·C.
State VEC. AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	Station _/ January	Lundoux Line	

x	2,690,000	_R _b +A	27,811,312.71
	+ 690,000	y R _b +A _ y	27,666,312.71
tan θ	0 ' "		
θ $\left\{ \right.$	"		145,000 - 8602.99
$-\frac{\theta}{\ell}(=\Delta\lambda)_{-}$		y''	- <u>8602.99</u> /36,397.01
\(\lambda\) (central mer.)	78°30' " 2 21 14.1865		0 . / . //
4 \\ _ \\ \ _ \\ \ \ \ \ \ \ \ \ \ \ \	76 08 45.8135	_φ (by interpolation)_	36 76 28.6810

Station Grid intersection B

Х	2,655,000	R _b +A	-
Cx' (= x-C)	+655,000	у	27,666,312.71
		Rь+A — у	-1,000,014.11
tan θ	0 ' "	R	
θ $=$ θ	"	y	145,000 - 7.752.48
$\underline{\underline{\theta}}(=\Delta\lambda)$		y <u>''</u>	- 7,752.48
		y'	137,247.52
λ (central mer.)_	78°30′″′	·	,
Δ λ	2 14 04.5013	ϕ (by interpolation).	36°42' 37.0909
λ	76 15 55.4987	, (a)	``

$$\tan \theta = \frac{x - C}{R_b + A - y}$$

$$\Delta \lambda = \frac{\theta}{\ell}$$

$$\lambda = \lambda$$
 (central mer.) $-\Delta \lambda$

$$R = (R_b + A - y) \sec \theta$$

$$y'' = 2R \sin^2 \frac{\theta}{2}$$
$$y' = y - y''$$

C is constant added to x' in computation

of coordinates

 $R_{\scriptscriptstyle b}$ is map radius of lowest parallel

A is value of y $^{\prime}$ for R $_{b}$; in most cases it is zero

ø is interpolated from table of y'

State Va. South	Station Grid	intersection	\mathcal{E}_{\cdot}
~ · · · · · · · · · · · · · · · · · · ·	0.00.000		

x	2,670,000	R _b +A	27,811,312.71
x' (= x-C)	+ 670,000	R _b +A — y	27,651,31271
tan θ	0 , "	_R	
1	"	y	160,000 8 115.96
$-\frac{\theta}{\ell}(=\Delta\lambda)_{-}$		y <u>''</u>	- <u>8 115.96</u> 15 1, 884.04
λ(central mer.)_	78° 30′ ″		75 1, 867.07
Δλ	2 17 13.1174	_ø (by interpolation)_	36° 45' 01'.8183
_λ	76 12 46.8826		

Station_____

x		R _b + A
_C		
_ tan θ	0 ' "	R
l	"	
_λ (central mer.)	0 ' "	y'
- Δ λ		ø (by interpolation)°″

$$\tan \theta = \frac{x - C}{R_b + A - y}$$

$$\Delta \lambda = \frac{\theta}{\ell}$$

$$\lambda = \lambda$$
 (central mer.) -- $\Delta\lambda$

$$R = (R_b + A - y) \sec \theta$$

$$y'' = 2R \sin^2 \frac{\theta}{2}$$
$$y' = y - y''$$

C is constant added to x' in computation

of coordinates

 R_b is map radius of lowest parallel

A is value of y' for R $_{\mbox{\scriptsize b}}$; in most cases it is zero

 ϕ is interpolated from table of y '

		State Va.	locat !	Station 2	riditured. A_
	· · · · · ·	$\phi = 36^{\circ} 4^{\circ}$ Tabular difference) -	$\lambda = 76$	16
-R (for mi	in. of ø)		y' (for mir	n. of ø)	
Cor. for se	ec. of <i>ø</i>		Cor. for se	c. of <i>φ</i>	+
_R		27,647,477	_y <u>'</u>		163,836
			y <u>"</u> (=2R s	$\ln^2 \frac{\theta}{2}$)	+ 7.736
-θ (for min	n. of λ)	0 ' "	y		<u> 171,572</u> _
Cor. for se	ec. of λ				
-θ	For machine	+ 1 21 19.6756	<u>θ</u> 2	For machine	° 40 39.8378
-θ"	computation	- TT		computation	
	<u> </u>		log θ''		
-log θ''			colog 2		9.69897000
_S for .θ			S for $\frac{\theta}{2}$		
log sin ⊕	↓ sin <i>θ</i>	0236551283	log sin ∉2_	$\sin \frac{\theta}{2}$.0118283916
log R	<u> </u>			R sin $\frac{\theta}{2}$	327,025
log x'			$\log \sin^2 \frac{\theta}{2}$	R sin² ₫ _	3,868
_x′	$R \sin \theta$	+654,005	log R		
		2,000,000.00	log 2	<u> </u>	0.30103000_
 -x	<u> </u>	2,654,005	log y''		
		· 			
x = 2,000	0,000.00+R	sin 0 19626	,		7 1521
v = v' + 2	R sin² ∉	V			• • • • •

y'= the value of y on the central meridian for the latitude of the station

S = log of ratio for reducing arc expressed in seconds to sine(see log tables)

		State	Va. South	Station 2	Frid interect. B
		$\phi = 36^{\circ}$	[^] ソ <u>ファ</u>	$\lambda = 76^{\circ}$	08
			erence of R for 1'		
					·
₋R (for mir	n. of ϕ)		y'(for mi	n. of ø)	
Cor. for se	c. of <i>ø</i>		Cor. for se	ec. of $\phi{}$	+
_R		27,647,477	y'		163,836
			y <u>"</u> (=2R s	$\sin^2\frac{\theta}{2}$)	+ 8.688
$_{\neg \theta}$ (for min	ı. of λ)	٠ , ١١	y		172,524
Cor. for se					
_\theta		+1 26 10.9	7975 \$		°43′ 05.49975
_θ''	For machine computation	11		For machine computation	
			log θ''		
log <i>θ''</i>			colog 2		9.69897000
_S for .θ			S for <u>@</u>		
log sin θ	sin <i>\theta</i>	,02506708		$\sin \frac{\theta}{2}$.0125345283
_ log R				R sin β	346 548
_log x'			$\log \sin^2 \frac{\theta}{3}$	R sin ²	346,548 4,344
_x′	R sin <i>&</i>	693,04	11 -		
		2,000,000	. 0 0 log 2		0.30103000_
_x		2,693,04	2 log y''		,
x = 2.000	0.000.00 + R	sin a A Took	,		-3 517

 $y = y' + 2R \sin^2 \frac{\theta}{2}$

y'= the value of y on the central meridian for the latitude of the station

S = log of ratio for reducing arc expressed in seconds to sine(see log tables)

		State Vo. &	outh !	Station $\frac{9}{3}$	Frid intersection C
		Tabular difference			
R (for min Cor. for se R -\theta (for min Cor. for se	c. of φ a. of λ)	- 27,677,816 -	y' (for mir Cor. for se y' y'' (=2R s	c. of ϕ	+ 133,496 + 8.696 142,192
_ 0	For machine computation	+ 1 26 10.9995		For machine computation	<u>° 43 ö.5.49975</u>
_log θ'' _S for θ			log θ''_ colog 2 S for $\frac{\theta}{2}$		9.69897000
_log sin <i>⊕</i> _log R	sin <i>0</i>	.0250670871	$\log \sin \frac{\theta}{2}$	R sin θ/2	.012 53 45783 346,928
log x'	R sin ⊕	693,802	log R	_R sin² #	0.30103000
_х		2,000,000.00 2,693,802	log y"		0.30103000

 $x = 2,000,000.00 + R \sin \theta$

 $y = y' + 2R \sin^2 \frac{\theta}{2}$

y'= the value of y on the central meridian for the latitude of the station

S = log of ratio for reducing arc expressed in seconds to sine (see log tables)

		State \sqrt{a} . A $\phi = 36^{\circ}$ 4°	forth	Station $\frac{2}{\lambda} = \frac{76}{}^{\circ}$	Frid intersection 9
		Tabular differenc			
_R (for mi	n. of ø)		y' (for mir	n. of ø)	
Cor. for se	ec. of <i>ø</i>		Cor. for se	c. of $\phi{}$	+
_R		27,677,816		<u> </u>	133,496
		0 1 11	y <u>"</u> (=2R s	$\sin^2\frac{\theta}{2})$	+ 7744
$_{-} heta$ (for mi	n. of λ)		∦ у		141,240
Cor. for se	ec. of \(\lambda		4		0 ///-
_θ	For machine	+1 21 19.675	4 2	For machine	° 46 3″9.8378
θ"	computation	11		computation	
			log θ''		
-log θ''			colog 2		9.69897000
_S for .θ			S for $\frac{\theta}{2}$		
log sin $ heta$	sin θ	.0236551283	$\log \sin \frac{\theta}{2}$	$\sin \frac{\theta}{2}$.0118283916
log R			<u> </u>	$\frac{1}{2}$ R sin $\frac{\theta}{2}$	327,384
_log x'	<u> </u>		$\frac{1}{2}\log \sin^2 \frac{\theta}{2}$	_R sin² $\frac{\theta}{2}$ _	3,872
_X′	R sin θ	654,722	log R	<u> </u>	
		2,000,000.00	log 2		<u> </u>
_xx		2,654,722	log y <u>"</u>		
		•			

 $x = 2,000,000.00 + R \sin \theta$

 $y = y' + 2R \sin^2 \frac{\theta}{2}$

y' = the value of y on the central meridian for the latitude of the station

S = log of ratio for reducing arc expressed in seconds to sine (see log tables)

		State Va.	South	Station 4	ridintersect E
					12 46.8826
		Tabular differenc			
				·	
-R (for mir	n. of ø)	27,659,612.46	y' (for mir	n. of ø)	151,700.25
_Cor. for sec	c. of <i>ø</i>	- <u>183.89</u>			+ 183.89
_R		27,659,428.57	/ y <u>'</u>		151,884.14
-			y <u>"_</u> (=2R s	$in^2 \frac{\theta}{2})$	+ 8,11.5.96
$_{-} heta$ (for min	. of λ)	+ 1°23 45.337.	y		160,000.00
Cor. for se	c. of λ	- 28.4 54 3	<u> </u>		
_θ		+ 1 23 16.8833	$\frac{\theta}{2}$		° 41 38.44 .
θ''	For machine computation	4996". 8833		For machine computation	
			$\log \theta''$		3.69869921
log θ''		3.69869921	colog 2		9.69897000
_S for .θ		4.68553238	S for $\frac{\theta}{2}$		4.68556425
log sin $ heta$	sin θ		$\frac{1}{\log \sin \frac{\theta}{2}}$	$\sin \frac{\theta}{2}$	8.08323346
.log R		7.44184320		_R sin 🕏	
log x'		582607479	$\lim{n \to \infty} \log \sin^2 \frac{\theta}{2}$	R sin² 😤 _	6.16646692
_x′	R sin $ heta$ _	669,999.98			7. 44184320
		2,000,000.00	11 .		0.30103000_
_x		2,669,999.98			3.90934012

 $x = 2,000,000.00 + R \sin \theta$

 $y = y' + 2R \sin^2 \frac{\theta}{2}$

 $y'=% \frac{1}{2}\left(\frac{y'}{y'}\right) =\frac{y'}{y'}$ the value of y on the central meridian for the latitude of the station

S = log of ratio for reducing arc expressed in seconds to sine (see log tables)

:		State Va-	South	Station &	rid Intersect A
		$\phi = 36^{\circ} 46^{\circ}$	44.2225	$\lambda = 76^{\circ}$	15 48.2254
		Tabular difference			
-R (for mi	n. of ø)	27,653,544.52	y' (for mir	n. of ø)	157,768.19
_Cor. for se	ec. of <i>ø</i>	_ 4472.32	11		+ 4472.32
		27,649,072.20	y <u>'</u>		162,240.51
		<u></u>	_y' <u>'</u> (=2R s	$\ln^2 \frac{\theta}{2}$)	+ 7759.49
$_{-}\theta$ (for mir	n. of λ)	+ 1°21'56.0911	у		170,000.00
Cor. for se	ec. of λ	- 29,2692	H		
θ		+ 1 21 26.8219	θ		<u>"40 43.41</u>
θ''	For machine computation	4886".8219		For machine computation	
			log θ''		3.68902651
_log <i>θ''</i>		3.68902651	colog 2		9.69897000
_S for .θ		4.68553423	S for $\frac{\theta}{2}$		4.68556471
.log sin <i>⊕</i> _	sin <i>θ</i>	·	log sin 🕏	sin $\frac{\theta}{2}$	8.07356122
_log R		7.44168056		$R \sin \frac{\theta}{2}$	
_log x'		5.81624130	Llog sin ² 용	, -	6.14712244
x′	R sin ⊕	655 00000		-	7.44168056
		2,000,000.00	log 2		0.30103000_
_X		2,655,000.00	11		3.88983300
		_ ′ ′			

 $x = 2,000,000.00 + R \sin \theta$

 $y = y' + 2R \sin^2 \frac{\theta}{2}$

y'= the value of y on the central meridian for the latitude of the station

S = log of ratio for reducing arc expressed in seconds to sine (see log tables)

R, y', and θ are given in special tables

		State Va	South:	Station 💆	rid Intersection B
		$\phi = 36^{\circ} 46^{\circ}$	35.8050	$\lambda = 76^{\circ}$	08 38.1521
		Tabular difference			·
			,	,	
₋R (fọr mi	n. of ø)	27,653,544.52	y' (for mir	n. of ϕ)	157,768.19
_Cor. for se	c. of <i>ø</i>	- 3621.04	_Cor. for se	c. of <i>φ</i>	+ 3621.04
_R		27,649,923,48	y'		161,389.23
					+ 8,6/0.77
$_{ extcolored} heta$ (for min	n. of λ)	+ 1°26 10.9995	y	2 /	170,000.00
Cor. for se	ec. of λ	- 23. <i>1555</i>			
_ 0		+ 1 25 47.8440	<u>\$</u>		° 42' 5"3.9
$\theta^{\prime\prime}$	For machine computation	5147.8440		For machine computation	
			log θ''		3.7/162538
_log θ''	•	3.7/162538	colog 2		9.69897000
_S for .θ		4.68552978	1		4.68556359
.log sin <i>θ</i> _	sin <i>0</i>		$\log \sin \frac{\theta}{2}$	_sin <u>θ</u>	8.09615897
_log R		7.44169394		R sin 😤	·
_log x'		5.83884910	log sin ² 😤	_R sin² #	6.19231794
_X′	$R \sin \theta$	690,000.02			7.44169394
		2,000,000.00	log 2		0.30103000
_x		2,690,000.02	ł		3.93504188
			, <u> </u>		

 $x = 2,000,000.00 + R \sin \theta$

 $y = y' + 2R \sin^2 \frac{\theta}{2}$

 $y'=% \frac{1}{2}\left(\frac{y'}{y'}\right) =\frac{y'}{y'}$ the value of y on the central meridian for the latitude of the station

 $S = log \ of \ ratio \ for \ reducing \ arc \ expressed \ in \ seconds \ to \ sine$ (see log tables)

R, y', and θ are given in special tables

		1/2	e H	A	rid Intersect C
	 ,,,				
·		$\phi = 36 42$	28,6810	$\lambda = 76$	08 4"5.8135
		Tabular difference	e of R for 1'	' of $\phi = 10$	07.73233
		<u>,</u>			
₋R (for mii	n. of ø)				133,496.43
_Cor. for se	c. of <i>ø</i>	_ 2900.58	Cor. for se	c. of <i>ø</i>	+ 2900.58
_R		27,674,915.70	y <u>'</u>		136,397.01
			$_{y''_{-}}(=2R s$	in² 💆)	+ 8'60299
$_{ar{-}} heta$ (for min	n. of λ)	+ 1°26 10.9995	y	-	145,000,00
Cor. for se	ec. of λ	<u> </u>			
_θ ·		+ 1 25 43.1941	<u> </u>		° 42 51.6
θ"	For machine computation	5143',1941	2	For machine computation	
			$\log heta''$		3.71123291
_log θ''		3.711 23291	colog 2		9.69897000
_S for .θ		4.68552987	S for $\frac{\theta}{2}$		4.68556361
.log sin €	sin <i>0</i>		$\log \sin \frac{\theta}{2}$	sin <u>2</u>	8.09576652
log R		7.44208631		_R sin β	
_log x'		5.83884909	$\log \sin^2 \frac{\theta}{2}$	_R sin² ∯	6.19153304
x′	R sin θ{-}		log R		7.44208631
		2,000,000.00_	_log 2		0.30103000_
_x		2,690,000.00			3,93464935

 $x = 2,000,000.00 + R \sin \theta$

 $y = y' + 2R \sin^2 \frac{\theta}{2}$

y'= the value of y on the central meridian for the latitude of the station

S = log of ratio for reducing arc expressed in seconds to sine (see log tables)

R, y', and θ are given in special tables

:		State Va.	South:	Station <i>J</i>	aid Intersect D
		ø = 36°42'	37.0909	$\lambda = 76^{\circ}$	15 55.4987
_	,	Tabular difference			
				,	<u> </u>
-R (for min. of ø)		27,677,816.28	y' (for min, of ø)		133,496.43
_Cor. for sec. of ϕ		- 3751.09			+ 3751.09
_R		27,674,065.19			137,247.52
			$v'' = 2R \sin^2 \frac{\theta}{2}$		+ 7.752.48
$_{ extcolored}^{ extcolored}$ (for min. of λ)		+ 1°21 56.0911	y		145,000.00
Cor. for sec. of \(\lambda		<u> </u>	1		
_θ		+1 21 22.4076	$\frac{\theta}{2}$		°40 41.2
_ \theta''	For machine computation	4882:4076	_	For machine computation	, ,
-			_log θ''		3.68863404
-log θ''		3.688 63404	colog 2		9.69897000
_S for , <i>θ</i>		4.68553431	S for $\frac{\theta}{2}$		4.68556473
. log sin <i>θ</i>	Lsin θ		log sin 😤 _	sin <u>#</u>	8.07316877
-log R		7.44207296		$\frac{2}{R} \sin \frac{\theta}{2}$	
_log x'		5.81624131		_R sin² ♣_	6.14633754
x′	R sin θ	6.55,000.02			7.44207296
		2,000,000.00	_		0,30103000
_X		2,655,000.02	1		388944050
		,			· ·

 $x = 2,000,000.00 + R \sin \theta$

 $y = y' + 2R \sin^2 \frac{\theta}{2}$

y'= the value of y on the central meridian for the latitude of the station

S = log of ratio for reducing arc expressed in seconds to sine (see log tables)

R, y', and θ are given in special tables

2,654,005 2,655,000 171,572 170,000

2,693,04Z 2,690,000 172,524 170,000

2,670,000

2,654,722 141,240

2,655,000

2,690,000 (2,693,802

PLANE COORDINATE GRID SYSTEM

Positions of grid intersections used for fitting the grid to this compilation were computed by Division of Geodesy and the computation forms are included in this report.

Positions plotted by //	I.D. REED. JR.
Positions checked by	
Grid inked on machine by	H. D. REED, JR.
Intersections inked by _	H. D. REED. JR.
Points used for plotting grid:	
x 2,695,000 FT y 165,000 FT	x 2,-710,000 y 150000
x 2,725,000 y -/65,000	<u>x</u>
x 2,695,000 y 140,000	<u>x</u> <u>y</u>
x 2,725,000 y 140,000	<u>x</u>
Triangulation stations used for ch	
1. North Landing, 1931	
2.	6.
3.	7.
4.	8.

State Va So	retto	StationStad &	Luteración A
_x	2,695,000	R _b +A	27,811,312.71
_x, (= x-c)	+695,000		27,646,312.71
tan θ	0 / "	R	
$- heta$ $ \left\{-$, "		165,000
$-\frac{\theta}{\ell}(=\Delta\lambda)_{-}$		y"	165,000 - 8 734.41 156, 265.59
\(\lambda\) (central mer.)	78° 30′ ″ + 2 22 21.7403	3	

38.2597

Station_ Grid intersection B

x	2,725,000	R _b +A	
Cx' (= x-C)	1725,000		27,646,312.71
tan θ	0 , "	R	•
θ	"		165 000 - 9 504.61
$-\frac{\theta}{\ell}(=\Delta\lambda)_{}$		y"	- 9 504.61 155,495.39
λ (central mer.)	78° 30′ ″		
Δ λ λ	2 28 30.2832 76 01 29.7168	y φ (by interpolation).	<u>36</u> ° 45′ 3 <u>7</u> . 5 265

$$\tan \theta = \frac{x - C}{R_b + A - y}$$

$$\Delta \lambda = \frac{\theta}{\ell}$$

$$\lambda = \lambda$$
 (central mer.) $-\Delta \lambda$
 $R = (R_b + A - y) \sec \theta$

$$y'' = 2R \sin^2 \frac{\theta}{2}$$
$$y' = y - y''$$

C is constant added to x' in computation

of coordinates

 $R_{\,\text{\scriptsize b}}$ is map radius of lowest parallel

A is value of y' for R $_{\mbox{\scriptsize b}}$; in most cases it is zero

 ϕ is interpolated from table of y'

State_Va.&	mith	StationSration	1 indersection C
_x	2,695,000	R _b + A	27,811,312.71
_Cx' (= x-C)	+695,000	у R _b +A — у	140,000 27,671,312.71
_tan θ	o , ,,	R	
$-\frac{\theta}{I}(=\Delta\lambda)$,,		140,000
$-\overline{\ell} (= \Delta \Lambda)$		v'	/3 / 273.47

 ϕ (by interpolation).

14.0261

Station Grid intersection 19.

x	2,725,000	R _b +A	140,000
x' (= x-C)	+ 725,000	R _b +A — y	27,671,312.71
θ	. 0 ' "	R	
$\frac{\theta}{\ell} (= \Delta \lambda)$		y	140,000 - 9 496.02 130,503.98
\(\lambda\) (central mer.)	78° 30′″ 2 28 22.2367	y'φ (by interpolation).	36° 41′ 30.4106
λ	76 01 37.7633		

$$\tan \theta = \frac{x - C}{R_b + A - y}$$

 λ (central mer.).

$$\Delta \lambda = \frac{\theta}{\ell}$$

$$\lambda = \lambda$$
 (central mer.) $\Delta \lambda$
 $R = (R_b + A - y) \sec \theta$

$$y'' = 2R \sin^2 \frac{\theta}{2}$$
$$y' = y - y''$$

C is constant added to $\boldsymbol{x}^{\, \prime}$ in computation

of coordinates

 $R_{\,\mbox{\scriptsize b}}$ is map radius of lowest parallel

A is value of y' for R $_{\mbox{\scriptsize b}}$; in most cases it is zero

 ϕ is interpolated from table of y'

State Va. South	Station	Gud intersiction	E

x	2710,000	_R _b +A	27,811,312.71
C	•	y	150,000
x' (= x-C)	+710,000	R _b +A – y	27,661,312.71
tan θ	0 ' "	_R	
θ	,,	,	
		y	150,000
$-\frac{\theta}{\ell}(=\Delta\lambda)$		_y <u>''</u>	- 9110.50
		v,	140.889.50
入(central mer.)_	78° 36 "		
Δλ	2 25 21.2843	∅ (by interpolation)_	36° 43' 13'.1029
λ	76 04 38.7157		

Station_____

x c	
x' (= x-C)	
$-\tan \theta$ θ θ θ θ θ θ θ θ θ	R
$\frac{\theta}{\ell} (= \Delta \lambda)$	
λ (central mer.)° " – Δ λ	φ (by interpolation)
λ	

$$\tan \theta = \frac{x - C}{R_b + A - y}$$

$$\Delta \lambda = \frac{\theta}{\ell}$$

$$\lambda = \lambda$$
 (central mer.) = $\Delta \lambda$
 $R = (R_b + A - y) \sec \theta$

$$y'' = 2R \sin^2 \frac{\theta}{2}$$
$$y' = y - y''$$

C is constant added to x' in computation

of coordinates

 $R_{\mathfrak{b}}$ is map radius of lowest parallel

A is value of y' for $R_{\,b}$; in most cases it is zero

ø is interpolated from table of y'

·		State Va. &	outh	Station \mathcal{L}	rid Intersection A.	
$\phi = 36^{\circ} 45 45.1422 \lambda = 76^{\circ} 07 38.2597$						
		· · · · · · · · · · · · · · · · · · ·			01.1323'3	
R (for mi	n. of ø)	27,659,612,46	y' (for mir	n. of <i>ø</i>)	151,700.25	
Cor. for se	c. of <i>ø</i>	- 4565.34	Cor. for se		+ 4,565.34	
_R		27,655,047.12	у <u>′</u>		156,265.59	
			_y' <u>'</u> _(=2R s	$\sin^2\frac{\theta}{2}$)	+ 8,734 41	
$_{-}\theta$ (for min	n. of λ)	+ 1° 26 47.4150	. y		165,000.00	
Cor. for se	ec. of λ	_ 23.2208	11			
_θ		+ 1 26 24.1942	<u>0</u> 2	 	° 43′ 12.971	
_ 0 "	For machine computation	"		For machine computation		
			_log <i>θ''</i>			
-log θ''			colog 2		9.69897000	
_S for .θ			S for $\frac{\theta}{2}$			
log sin $ heta$	sin <i>0</i>	.0251310367	$\log \sin \frac{\theta}{2}$	$\sin \frac{\theta}{2}$.0125665106	
_ log R	·			_R sin θ/2	347,527.443	
_log x'			$-\log \sin^2 \frac{\theta}{2}$	R sin² $\frac{\theta}{2}$	4,367.207	
_x′	R sin <i>⊕</i> _	695,000.00	_log R	,		
,		2,000,000.00	_log 2		0.30103000	
_x			log y <u>"</u>			

 $x = 2,000,000.00 + R \sin \theta$

 $y = y' + 2R \sin^2 \frac{\theta}{2}$

y'= the value of y on the central meridian for the latitude of the station

S = log of ratio for reducing arc expressed in seconds to sine (see log tables)

R, y', and θ are given in special tables

		State VO	South:	Station	Grid intersection B.
		ø = 36° 45	37.5265	$\lambda = 76^{\circ}$	01 29.7168
		Tabular differenc			
				,	
-R (for mir	n. of ø)	27,659,612.46	y' (for mir	n. of ø)	151,700.25
_Cor. for se	c. of ø	<u> </u>	Cor. for se	c. of <i>ø</i>	+ 3795.14
_R		27,655,817.32	y <u>′</u>		155495.39
			<u> </u>	in² 뚱)	+ 9.504.61
$_{-} heta$ (for min	ı. of λ)	+ 1 ° 30 25,9079	y	Z , —	165,000.00
Cor. for se		- 18.0359	13		
θ		/ 30 07.8720	-	,	° 45 0"3.936
θ''	For machine computation	71	-	For machine computation	
			$\log \theta''$		
_log θ''			colog 2		9.69897.000
_S for .θ			S for $\frac{\theta}{2}$		<u> </u>
.log sin <i>⊕</i>	sin <i>θ</i>	.0262150997	log sin 😤	_sin g	.0131086762
log R				_R sin ∯	362,531.14
_log x'			log sin² 🕏	_	4,752.303
_X′	$R \sin heta$	725,000,00	log R		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		2,000,000.00	log 2		0.30103000
х		2,725	log y''	<u>. </u>	
		, ,			

 $x = 2,000,000.00 + R \sin \theta$

 $y = y' + 2R \sin^2 \frac{\theta}{2}$

 $[\]mathbf{y'} = \mathbf{the} \ \mathbf{value} \ \mathbf{of} \ \mathbf{y} \ \mathbf{on} \ \mathbf{the} \ \mathbf{central} \ \mathbf{meridian} \ \mathbf{for} \ \mathbf{the} \ \mathbf{latitude} \ \mathbf{of} \ \mathbf{the} \ \mathbf{station}$

S = log of ratio for reducing arc expressed in seconds to sine (see log tables)

R, y', and θ are given in special tables

		State Va.	South	Station /	Grid intersection C
		ø = 36° 41'	38.0193	$\lambda = 76^{\circ}$	07 45.9739
	·	Tabular difference			
			т-		1
R (for min	. of ø)	27,683,884.23	y' (for mir	1. of ø)	127,428.48
_Cor. for sec	of <i>ø</i>	- <u>3844.99</u>	Cor. for se	c. of <i>ø</i> _	
_R		27,680,039.24	y <u>'</u>		131,273.47
			<u></u> y <u>"</u> (=2R s	$\ln^2\frac{\theta}{2})$	+ 8,726.53
$_{-} heta$ (for min.	of λ)	+ 1°26 47.4150	y		140,000,00
Cor. for sec	c. of \(\lambda	27.9027			,
_θ	_	1 26 19.5123	<u>θ</u> 2		° 43 69.75
θ''	For machine computation	+ 5179."5123		For machine computation	
			$\log \theta''$		3.71428887
_log θ''		3.71428887	colog 2		9.69897000
_S for .θ		4.68552922	II		4.68556345
.log sin €	sin		log sin ∉	$\frac{1}{2}$ sin $\frac{\theta}{2}$	8.09882232
log R			2	_	
_log x'		5.84198480			6.19764464
_x′	R sin θ	695,000		2	7.44216671
		2,000,000.00_	II .		0.30103000
_x			log y''		3.94084135

 $x = 2,000,000.00 + R \sin \theta$

 $y = y' + 2R \sin^2 \frac{\theta}{2}$

y' = the value of y on the central meridian for the latitude of the station

 $S = log \ of \ ratio \ for \ reducing \ arc \ expressed \ in \ seconds \ to \ sine$ (see log tables)

R, y', and θ are given in special tables

,		State Va	South	Station 🔏	id intersection D
			_		01 37.7633
 		Tabular difference			
	- · · · · · · · · · · · · · · · · · · ·	,	П		
₋R (for mi	n. of ø)	27,683,884.23	y' (for mii	n. of ø)	127,428.48
_Cor. for se	ec. of <i>ø</i>	_ 3075.50			+ <u>3075.50</u>
_R	,	27680,808.73] y'		130,503.98
			⊥v <u>"</u> (=2R s		+ 9,496.02
$_{-}\theta$ (for mir	n. of λ)	+ 1 ° 30' 25.9079	'		140,000.00
_Cor. for se		- 22.9195	_		
θ	, ,	1 30 02.9884	[[° 45 0"1.49
θ''	For machine computation	5402'.9884		For machine computation	
			$\log \theta''$		3.73263404
log θ"		3.73263404			9.69897000
_S for .θ		4.685.52520	il .		4.68556246
log sin $ heta$	sin <i>⊕</i> _		log sin $\frac{e}{3}$ _	$-\sin\frac{\theta}{2}$	8.11716650
_log R		7.442 17878	11 -	$R \sin \frac{\theta}{2}$	
_log x'		5.86033802	$\log \sin^2 \frac{\theta}{2}$		6.23433300
_x′	$R \sin \theta$	725,000,02	_		7.44217878
···		2,000,000.00	1 .		0.30103000_
_X			log y <u>"</u>		3,97754178

 $x = 2,000,000.00 + R \sin \theta$

 $y = y' + 2R \sin^2 \frac{\theta}{2}$

y'= the value of y on the central meridian for the latitude of the station

S = log of ratio for reducing arc expressed in seconds to sine (see log tables)

R, y', and θ are given in special tables

Tabular difference of R for 1" of $\phi = 100$. 138.7157 Tabular difference of R for 1" of $\phi = 100$. 132.33 R (for min. of ϕ) $27,671,748.34$ y' (for min. of ϕ) $139,564.37$ Cor. for sec. of ϕ $132.5.13$ Cor. for sec. of ϕ $132.5.13$ y' $140.889.50$ P (for min. of ϕ) $139,564.37$ Cor. for sec. of ϕ $132.5.13$ y' $140.889.50$ P (for min. of ϕ) $139,564.37$ Cor. for sec. of ϕ $140,500$ Cor. for sec. of ϕ $140,500$ Cor. for sec. of ϕ $140,500$ Cor. for sec. of ϕ $144,500$ Cor. for min. of ϕ $144,500$ Cor. for			State Va	South	Station 2	hid Intersection E
Tabular difference of R for 1" of $\phi = /O/$. /32 3.3 R (for min. of ϕ) 27,671,748.34 y' (for min. of ϕ) /39,564.37 Cor. for sec. of ϕ - /325.13 Cor. for sec. of ϕ + /325.13 R 27,670,423.21 y' /40,889.50 θ (for min. of λ) + / °28′ 36,6615 y y' /(=2R sin² $\frac{\theta}{2}$) + 9, //0.50 Cor. for sec. of λ - 23,4975 θ /50,000,00 Cor. for sec. of λ - 23,4975 θ /50,000,00 Cor. for sec. of λ - 23,4975 θ /750,000,00 Sometime for machine computation θ /28 /3.1640 θ /29 θ /44 0%.6 θ /44 0%.6 θ /76 for machine computation θ /69,69,7000 Sometime for machine for machine for machine computation θ /44 0%.6 θ /46,6556295 θ /69,89,7000 Sometime for θ /69,89,7000 θ /69,89,7000 Sometime for θ /69,89,7000 θ /69,89,7000 Sometime for θ /6,8556295 θ /69,89,7000 Sometime for θ /6,8556295 θ /69,89,7000 Sometime for θ /6,8556295 θ /7,9666						
R (for min. of φ) 27,67 , 748.34 y' (for min. of φ) /39,564.37 Cor. for sec. of φ - /325./3 Cor. for sec. of φ + /325./3 R 27,670,423.27 y' /40,889.50 θ (for min. of λ) + / °28′ 36.66/5 y /50,000.00 Cor. for sec. of λ - 23.4975 θ For machine computation S293°.1640 θ For machine computation θ 3,7237/535 θ θ		•		•		,
Cor. for sec. of ϕ = $1.325.13$ Cor. for sec. of ϕ + $1.325.13$ R $27670.423.21$ y' $1/40.889.50$ θ (for min. of λ) + $1.28.36.6615$ y'' (=2R sin² $\frac{\theta}{2}$) + $9.1/0.50$ θ (for min. of λ) + $1.28.36.6615$ y $1.50.000.00$ Cor. for sec. of λ - 23.4975 y $1.50.000.00$ θ (or for sec. of λ - 23.4975 $\frac{\theta}{2}$ $\frac{\theta}{2}$ $\frac{\theta}{2}$ Cor. for sec. of λ - $\frac{23.4975}{1.0000}$ $\frac{\theta}{2}$ $\frac{\theta}{2$	-	-			· · ·	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-R (for min. of \$\phi\$) 27,671,748.34			y' (for min. of ø)		139,564.37
R $27,670,423.21$ y' $/40,889.50$ θ (for min. of λ) $+1^{\circ}28'$ 36.6615 y $+1^{\circ}28'$ 36.6615 $+1^{\circ}28'$ 36.6615 y $+1^{\circ}28'$ 36.6615 $+1^{\circ}28'$	_Cor. for se	ec. of <i>ø</i>	<u> </u>	Cor. for se	c. of $\phi_{}$	+ 1325,13
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_R		27670423.21]_y′		140,889.50
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				$v''_{-}(=2R \sin^2 \frac{\theta}{2})$		+ 9,110.50
Cor. for sec. of λ	θ (for min. of λ)		+ 1°28' 36,6615	- V	<i>- '</i>	150 000,00
			_	11		
θ" For machine computation 5293.1640 For machine computation $\log \theta$ " 3.72371535 $\log \theta$ " 3.72371535 $\log \theta$ " 9.69897000 9.69897000 S for θ 4.68552720 S for $\frac{\theta}{2}$ 4.68556295 $\log \sin \theta$ $\sin \theta$ $\log \sin \frac{\theta}{2}$ $\sin \frac{\theta}{2}$ 8.10824830 $\log x$ $\sqrt{5.85125835}$ $\log \sin^2 \frac{\theta}{2}$ $R \sin^2 \frac{\theta}{2}$ 6.21649660						° 44 06.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\theta^{\prime\prime}$		_			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				$\log \theta''$		3.72371 <i>5</i> 3 5
S for θ 4. 68552720 S for $\frac{\theta}{2}$ 4. 68556295 log sin θ sin θ log sin $\frac{\theta}{2}$ sin $\frac{\theta}{2}$ 8.10824830 log sin $\frac{\theta}{2}$ R sin $\frac{\theta}{2}$ 6.21649660	_log θ''		3 ,72371535	1		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-		4.68552720	11		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		sin θ		71 -	_sin g	8.10824830
$-\log x'$ $\frac{5.85125835}{125835} \log \sin^2 \frac{\theta}{2} + R \sin^2 \frac{\theta}{2} = \frac{6.21649660}{1200000000000000000000000000000000000$			7.44201580	2	! ←	
	_		5.85125835	$\log \sin^2 \frac{\theta}{2}$	~	6.21649660
	_	R sin θ		-		
2,000,000.00 log 20.30103000_			•	l		
x log y" 395954240]	ļ	
				.58 ,		

 $x = 2,000,000.00 + R \sin \theta$

 $y = y' + 2R \sin^2 \frac{\theta}{2}$

 $y'=% \frac{1}{y}$ the value of y on the central meridian for the latitude of the station

S = log of ratio for reducing arc expressed in seconds to sine (see log tables)

R, y', and θ are given in special tables

2,691,974 166,426 2,695,000 2,727,358 167,335

165,000

150,000.

2,692,733

2,728,156 137,005

		State Va x	South:	Station $\lambda = 76^{\circ}$	A 08 15
		Tabular differenc	e of R for 1'	′ of $\phi =$	· · · · · · · · · · · · · · · · · · ·
! I II			y' (for min. of φ) Cor. for sec. of φ +		
_R		27,653,544	y <u>'</u>		157,768
$_{-}\theta$ (for min. of λ)		0 ' "	y''_{-} (=2R sin ² $\frac{\theta}{2}$)		+ 2x4 329 + 62,097 166,426
_0	<u> </u>	+ 1 26 01.895	$\frac{\theta}{2}$		0 , "
_ 0 ''	For machine computation	"		For machine computation	
·	,				
_log <i>θ</i> "			colog 2		9.69897000
_S for ,θ			S for $\frac{\theta}{2}$		
log sin $ heta$	sin <i>⊕</i>	0.02502296	$\log \sin \frac{\theta}{2}$	$-\sin\frac{\theta}{2}$	0.01251242
_log R			<u> </u>	R sin $\frac{\theta}{2}$	346,013.
_log x'			$\log \sin^2 \frac{\theta}{2}$	$R \sin^2 \frac{\theta}{2}$	
_X′	R sin <i>θ</i>	+691,974	log R		
		2,000,000.00	log 2		0.30103000
_X		2,691,974	↓log y <u>"</u>		
			1 .		

R, y', and θ are given in special tables

 $x = 2,000,000.00 + R \sin \theta$

 $y = y' + 2R \sin^2 \frac{\theta}{2}$

y'= the value of y on the central meridian for the latitude of the station

S = log of ratio for reducing arc expressed in seconds to sine (see log tables)

	, , , , , , , , , , , , , , , , , , ,	State Va &	outh.	Station	В
		ø = 36° 46	"	$\lambda = 76^{\circ}$	01 "
		Tabular difference			
1			,	, <u> </u>	
-R (for mi	n. of ø)		y' (for min. of φ)		
_Cor. for se	c. of <i>ø</i>	_	_Cor. for sec. of ϕ		+
_R		27,653,544	1 v'		157,768
		,	$y''_{-}(=2R \sin^2\frac{\theta}{2})$		+ 9567
$_{-}\theta$ (for min. of λ)		0 / 17	y		167,335
Cor. for se					
θ		+ / 30 25.907	20		0 ' "
_0''	For machine computation	"	42	For machine computation	
			$\log heta''$		
_log θ''			colog 2		9.69897000
_S for .θ			S for $\frac{\theta}{2}$		
₋log sin <i>⊕</i>	sin <i>⊕</i>	0.0263025101	log sin 렺	$-\sin\frac{\theta}{2}$,0131523927
log R				$R \sin \frac{\theta}{2}$	363,710.3
_log x'			$\log \sin^2 \frac{\theta}{2}$	_R sin² 婁	4,783.6
_x′	$R \sin \theta$	+ 727,358	log R		
		2,000,000.00	tl .		0.30103000
_X		2,727,358	log y <u>"</u>		

 $x = 2,000,000.00 + R \sin \theta$

 $y = y' + 2R \sin^2 \frac{\theta}{2}$

y'= the value of y on the central meridian for the latitude of the station

S = log of ratio for reducing arc expressed in seconds to sine (see log tables)

R, y', and θ are given in special tables

State Va South Station C = 36° 41 " \ \ \tau = 76° 08' 1"5								
$\phi = 36^{\circ} 41^{\circ} \lambda = 76^{\circ} 08^{\circ} 15^{\circ}$								
Tabular difference of R for 1" of ϕ =								
Tabalat difference of it for 1 or y								
R (for min. of ϕ)			y' (for min. of ϕ)					
Cor. for se	c. of ø		Cor. for sec. of ϕ +					
_R		27,683 <i>,884</i>	y' 127,428					
		, ,	_y' <u>'</u> _(=2R s	$y''_{-}(=2R \sin^2 \frac{\theta}{2})$ + $2(4/334)$				
$_{-}\theta$ (for min	n. of λ)	+ 1°26 10.9995	-y=\ 2\\ 0\\\ v		<i>131 76</i> 2			
Cor. for sec. of \(\lambda\) - 9.1039		-		136,096				
θ + 1 26 01.89.50		9		0 ' "				
	For machine computation	"		For machine computation				
			log θ"					
_log θ''			colog 2		9.69897000			
_S for .θ			S for $\frac{\theta}{2}$					
log sin 0	sin &	0.02502296	log sin ∉ ⊥	$\sin \frac{\theta}{2}$.01251242			
log R			- 2	_R sin β	346,392.4			
_log x'			$\log \sin^2 \frac{\theta}{2}$	_R sin² _考	,			
_X′	R sin <i>⊕</i> _	+692,733	log R	4				
		2,000,000.00	log 2		0.301 <u>03000</u>			
_x		2,692,733	log y''	·				
		, ,						

R, y', and $\boldsymbol{\theta}$ are given in special tables

 $x = 2,000,000.00 + R \sin \theta$

 $y = y' + 2R \sin^2 \frac{\theta}{2}$

y' = the value of y on the central meridian for the latitude of the station

 $S = log \ of \ ratio \ for \ reducing \ arc \ expressed \ in \ seconds \ to \ sine$ (see log tables)

		State	outh.	Station	D 01 "
	· .	Tabular difference	e of R for 1'	' of φ <u>=</u>	
_R (for min. of ϕ)		y' (for min. of ϕ) Cor. for sec. of ϕ + y'		127,428	
_Cor. for se _θ _θ''	For machine computation	+ / 30 25.9079		For machine computation	יי ס
_log θ'' _S for θ			log θ'' colog 2 S for $\frac{\theta}{2}$		9.69897000
. log sin <i>θ</i>	sin θ	0.026302510	 	R sin $\frac{\theta}{2}$	0,013152392 364,1093
_log x'	R sin <i>0</i>	+ 728, 156 2,000,000.00	_log R	_R sin² ^θ / ₂ _	0.30103000_
_X		2,728,156	log y''		

R, y', and θ are given in special tables

 $x = 2,000,000.00 + R \sin \theta$

 $y = y' + 2R \sin^2 \frac{\theta}{2}$

y' = the value of y on the central meridian for the latitude of the station

S = log of ratio for reducing arc expressed in seconds to sine (see log tables)