

FORM 504 Rev. Dec. 1933 DEPARTMENT OF COMMERCE U.S. COAST AND GEODETIC SURVEY R. S. PATTON, DIRECTOR	
DESCRIPTIVE REPORT Topographic Westerkis Sheet No. REG T-5613	
State NEW JERSEY	
TUCKAHOE RIVER	
VICINITY OF CEDAR SWAMP. CREEK.	
19362 OHIEF OF PARTY	
E. H. Kirsch	

applied to drawing of Chart 1217-May 16, 1938 - Jou. applies to new compilation of the 827 Vuly 1939 - S.P.

TOPOGRAPHIC TITLE SHEET

The Topographic Sheet should be accompanied by this form, filled in as completely as possible, when the sheet is forwarded to the Office.

Field No10
REGISTER NO. T-5643 75643
State NEW JERSEY
General locality CATE MAY COUNTY TUCKAHOE RIVER
Locality TUCKAHOE RIVER VICINITY OF CEDAR SWAMP CREEK AND VICINITY
Photographs 4-18-32 & 8-1-32 Scale 1:10 000 Date of survey Compilation June & 19 36 July
Vessel Air Photo Party No. 21.
Chief of party E. H. Kirsch
Surveyed by See data sheet in descriptive report
Inked by F. H. MoBeth
Heights in feet aboveto ground to tops of trees
Contour, Approximate contour, Form line intervalfeet
Instructions dated Key 16th, 1935 19 19
Remarks: None.

SHEET NO. 10 REGISTER NO. T-5643

PHO TO NBS. 66-8-19 to 24 66-8-54 to 55 66-55-26 to 29 DATE 4-18-32 4-18-32 8-1-32

PROJECTION BY

PROJECTION CHECKED BY

CONTROL PLOTTED BY

CONTROL PLOTTING CHECKED BY

CONTROL PLOTTED ON PHOTOS BY

CONTROL CHECKED ON PHOTOS BY

SMOOTH RADIAL PLOT BY

SMOOTH RADIAL PLOT CHECKED BY

DETAILED BY

L. C. RIPLEY 5-2-35

T. B. NUTTING 5-2-35

F. H. RICHARDSON 1935

F. H. MCBETH JUNE 1936

F. H. RICHARDSON 1935

F. H. MCBETH JUNE 1936

H. KIRSCH JUNE 1936

H. MCBETH JUNE 1936

F. H. MCBETH JUNE & JULY 1936

LAND AREA 20 Square statute miles

NO COAST LINE

NO SHORELINE MORE THAN 200 METERS WIDE

LENGTH OF STREAMS 27 STATUTE MILES (Less than 200 meters wide).

Reference Station Swamp 1935

Latitude 39° 15' 41.450' (1278.2 meters) } Field Computations

Longitude 74 42 21.326 (511.3 meters)

N.J. Grid Coord. x = 1,988,884.01 ft. y = 155,950.05 ft.

GENERAL INFORMATION

STATISTICS:

There are 20 square statute miles composing this sheet; no coast line, no streams over 200 meters wide, and 27 statute miles of streams less than 200 meters wide.

GENERAL REPORT:

This sheet covers the area about the confluence of Cedar Swamp Creek and the Tuckahoe River. While neither of these streams are at this location more than 200 meters wide there is considerable traffic on both as far as the two bridges shown at the town of Tuckahoe and the road crossing near Station SWAMP just east of Petersburg.

Back from the well developed tidal flats surrounding both streams the country is generally timbered, but along the two main roads (U. S. Highway No. 9) and (N. J. State Highway No. 50) the country is well developed for trucking and thickly settled.

PHO TOGRAPHS:

The sheet is detailed from three different flights of photographs. Photos 66-8-19 to 66-8-24 inclusive were from the flight down the western portion of the sheet and were taken on April 18th, 1932. Pictures No. 66-8-54 to 55 were taken in the vicinity of Palermo in the south east corner of the sheet on April 18th, 1932 and join up with the flight beginning with the photo No. 66-55-26 and running north along the eastern edge of the sheet to photo No. 66-55-29. This last flight was made on Aug. 1st, 1932

Other than the dates given there is no time recorded for the various flights mentioned and the consequent stage of the tide is not known.

CONTROL

SOURCES:

Control for this sheet consists of the traverse running south along N. J. Highway No. 50 and thence east along the road leading from Petersburg. This traverse was established by the N. J. Geodetic Control Survey in 1936. Second order triangulation by Lieut. B. H. Rigg in 1935. Both triangulation and traverse are on the N. A. 1927 datum.

Unadjusted

ERRORS:

No errors or descrepances have been found in the control.

COMPILATION

METHOD: The radial line method as described in "Notes on the compilation of planemetric line maps from 5 lens aerial photographs", has been used as applied to single photographs.

ADJUSTMENTS OF THE PLOT:

No unusual adjustments of the plot were

found necessary.

INTERPRETATION:

The failure to record the time of the photographs has made the delineation of the high water line rather difficult at places. The water line along the Tuckahoe River in the vicinity of Lat. 39°-18', Long. 74°-14' has been difficult. The smoke from a forest fire in this area has obliterated the river bank and it has been found necessary to sketch a part of the water line. The river bank at this location has no marked irregularities and it is believed that the required accuracy has been attained by this method. The ditch system of drainage appearing on this sheet was dug by the mosquito and pest control organization operating in this vicinity. Where fairly definite they have been located but in places where the drainage has broken away from the system, the partically obliterated ditches have not been shown.

The Civilian Conservation Camp shown has undergone some more development since these photos were taken. These changes are not shown on the sheet.

INFORMATION FROM OTHER SOURCES:

Traverse stations from the N. J. Geodetic Control Survey. Names from a map published by the N. J. State Dept. of Conservation and development.

CONFLICTING NAMES:

This area has not been covered by any other U.S. C. & G. Survey Chart. The area has been mapped by the N. J. State Dept. of Conservation and development. The original survey for this purpose was made in 1883-1884 and the principle features have been revised to the date of 1933. Although that map is not as detailed as this compilation, no descrepancies have been noticeable. There are no conflicting names.

* Sheet No. 37 filed in Geog Names

COMPARISON WITH OTHER SURVEYS:

Junctions have been made with the adjacent sheet as follows: Sheet No. T-5641 on the North, No. T-5642 on the East, and sheet No. 5644 on the south. The western edge of the sheet is the limit of the compilating.

LANDMARKS FOR CHARTS: A list of marked recoverable stations are submitted with this report.

There are no la ndmarks or objects of prominance suitable for such purposes occuring on this sheet.

BRIDGES:

The following bridge data was obtained by field inspection. Highway bridge, Tuckahoe River, Corbin City, Lat. 39 - 17.8' Long. 74°-45.2', Single leaf bascule, Hor. Clearance 30 feet, Ver. Clearance 9 feet at M. H. W. with bridge closed.

Highway bridge, Cedar Swamp Creek, Lat. 39°-15.8' Long. 74°-42.2', concrete, fixed, Hor. clearance 4 feet, Ver. clearance 2 feet at M. H. W.

Highway bridge, Cedar Swamp Creek, Lat. 39°- 14.9' Long. 74°- 42.8', wooden, fixed, Hor. clearance 10 feet, Ver. clearance 2 feet.

Railroad bridge, Cedar Swamp Creek, Lat. 39°- 14.8', Long. 74°- 43.1', wooden trestle, fixed, Hor. clearance 8 feet, Ver Clearance 1 foot.

Highway bridge, Cedar Swamp Creek, Lat. 39°- 14.8', Long. 74°- 43.1', wooden treatle, fixed, Hor clearance 11 feet, Ver clearance 3 feet.

RECOMMENDATIONS FOR FURTHER SURVEYS:

This compilation is believed to have an error of not nore than .5 MM in position of well defined detail of importance for charting, and .8 MM for other detail. It is believed to be accurate, thorough, and complete for charting purposes, and that no additional surveys are necessary.

Assisted by E. H. Kirsch

E. H. Kinsch

Chief of Party. No. 21.

F. H. McBeth.

Remarks

Decisions

	called Corbin	
1	On H. Prog. Mil. Map Quad (Tuckahoe)	
2		
3		
4		
5	i .	
6		one word
7		drop terminal 5
8		(
9		
.10	P.	
11	·	on adjoining sheet
12		
13		
14		
15	<i>*</i>	
16		
17		
18	· · · · · · · · · · · · · · · · · · ·	· .
19		
20	,	
21		
22		
23		
24		
25		
26	·	
27		
M 234	- · · · · · · · · · · · · · · · · · · ·	

	GEOGRAPHIC NAMES			STA	et don		O of Se	, / ;	Wag II4		5/\s
-	Survey No. 7-5643	3	15. N.	SHOUS IN	X GO TO VA		Ho. Way	Guide	McHor	J. J	راما رسام
		\or Gr	40 0	Survey Con	D S	Con Sept.	or local mod	O. Gire d	A COUNTY OF THE POINTY OF THE	7. S. O.	dwet
•	Name on Survey	<u> _A</u>	<u>/</u> B	<u>/c</u>	∠ D ⁹ M	<u> E</u>	/ F	/ G	<u>/ H</u>	/ K ·	icial Guid
	Corbin City V			Corbin	/			Corbin		Curbin	1
. "	Swan Pond				1.	-	•				2
•	Tuckahoe River	July Kon	1	1	/			/			3
- !	Cedar Swamp Creek		,	/	/						4
*.	Middletown /	•		/				/			5
	Half-Way Creek				1			į			6
	Bank Creek	•		Bank cr.	7						7
	Bank Creek / Hughes Creek			/	1						8
٠,٠	Petersburg						/				9
	Palermo 1	√.		~			V				10_
1	Green Kield			1							11
•	- 1 - factor for the form										12
1	Cedar Springs	/			/					/	13
,	Ludiam Creek V	/		/	Ludlams Cr.						· 14
	Tuckahoe /				/			/			15
	·										16
•		٠.									17
ι											18
											19
•											20_
											21
			1000				,				22
											23
•											24
	Names underlined in red	nnroved									25
	by a GHE on 1	• •	11								26
•											27
					1	1					M 234:

PLANE COORDINATE GRID SYSTEM

Positions of grid intersections used for fitting the grid to this compilation were computed by Division of Geodesy and the computation forms are included in this report.

Positions plotted by R.E. Ask
Positions checked by R.E. Ask
Grid inked on machine by RE Ash
Intersections inked by N. M. Schlitter

Points used for plotting grid:

<u>x</u>	1,975,000 ft.	x 1,995,000 y 170,000
¥ Y	1,985,000	x 1,975,000 y 145,000
x y	1,995,000	x y
x y	1,975,000	<u>x</u>
Triangul	lation stations used for che X=1,988,884-al y=155,950.05' Swamp 1935 (field Pas.)	ocking grid:
2.	<u> </u>	6.
3.		7.

State	N. J.	_ Station	
x	1,975,000.00	$\log S_{\mathfrak{g}}$	4 39 79 3 984
K	2,000,000,00	log (1200/3937)	9,48401583
x' $(=x-K)$	- 25,000,00	log (1/R)	10.86
$x'^3/(6\rho_o^2)_s$	+ .01	$\log S_m$	4.48196653
S _f	- 24,99,99	cor. arc to sine	
	,	$\log S_1$	3,88196643
3 log x'	13,143 8200 3	log A	8.50913612
$\log 1/(6\rho_{\theta}^2)_{\theta}$	4.5810213	log sec φ	0.11134909
	17.7748413	log Δλ ₁	2,50245164
	, , , , ,	cor. sine to arc	+ 18
$\log S_m^2$	7,76393386		2.50245180
log C	1.317613	Δλ	318.0181
log Δφ	9,081546		
y	170,000.00		
ϕ' (by interpolation).	0 / /	λ (central mer.)	74 40 00.0000
Δφ			+ 5 14,0181
φ	39 14 00,2229	λ	74 45 18.0181
•	0.69 mm.		43.17 mm

Explanation of form:

$$x'=x-K$$

$$S_{g} = x' - \frac{x'^{3}}{(6\rho_{o}^{2})_{g}}$$

$$S_m = \frac{1}{R} \left(\frac{1200}{3937} \right) S_q$$

R=scale reduction factor

 ϕ' is interpolated from table of y

$$\Delta \phi = C S_m^2$$

$$\phi = \phi' - \Delta \phi$$

$$\Delta \lambda_1 = S_1 A \sec \phi$$

 $\log S_1 = \log S_m - \text{cor. arc to sine}$

 $\log \Delta\lambda {=} {\log \Delta\lambda_1} {+} {\rm cor.}$ are to sine

 $\lambda = \lambda$ (central mer.) $-\Delta \lambda$

{

State	, J.	_ Station	
x	1,985,000.00	$\log S_{\sigma}$	4. 176 09126
K	2,000,000.00	log (1200/3937)	9.48401583
x' (=x-K)	-15,000.00	log (1/R)	1086
$x'^3/(6{\rho_o}^2)_{g}$		$\log S_m$	3,66011795
S _f	- 15,000,00	cor. arc to sine	4
		$\log S_1$.	3,66011791
3 log x'	12.52827378	log A	8.509 13 716
$\log 1/(6\rho_0^2)_g$	4.5810213	log sec φ	0.11109341
$\log x'^3/(6\rho_o^2)_g$	7.1092951	log Δλ ₁	2.24034898
		cor. sine to arc	+ 6
$\log S_m^2$	7,32023590	log Δλ	2.28034804
log C	1.316966	Δλ	190,6993
log Δφ	8.637202	-	
<i>y</i>	155,000.00		
ϕ' (by interpolation)		λ (central mer.)	74 40 00.000
Δφ		Δλ	+ 3 10.6993
φ	39 15 32,0401	λ	74 43 10.6993
	98.81 mm		25.66 mm

Explanation of form:

$$x'=x-K$$

$$S_{g} = x' - \frac{x'^{3}}{(6\rho_{o}^{2})_{g}}$$

$$S_m = \frac{1}{R} \left(\frac{1200}{3937} \right) S_q$$

R=scale reduction factor

 ϕ' is interpolated from table of y

$$\Delta \phi = C S_m^2$$

$$\phi = \phi' - \Delta \phi$$

$$\Delta \lambda_1 = S_1 A \sec \phi$$

 $\log S_1 = \log S_m - \text{cor.}$ are to sine

 $\log \Delta \lambda = \log \Delta \lambda_1 + \text{cor.}$ are to sine

 $\lambda = \lambda$ (central mer.) $-\Delta \lambda$

State	(. J.	STATION	
x	1,995,000,00	log S _g	3, 69897000
K	2,000,000.00	log (1200/3937)	9.48401583
x' (=x-K)	- 5,000.00	log (1/R)	1046
$x'^3/(6\rho_o^2)_o$		$\log S_m$	3,18299669
$S_{\mathfrak{c}}$	- 5,000,00	cor. arc to sine	
		$\log S_1$	3,18299669
3 log x'	11.096 91000	log A	8.509 13 785
$\log 1/(6\rho_o^2)_g$	4.5810213	log sec φ	0,110 92 3 97
$\log x'^3/(6\rho_o^2)_g$	5.6779313	$\log \Delta \lambda_1$	1.80305851
		cor. sine to arc	+
$\log S_m^2$	6.34599338	log Δλ	1.80305852
log C	1.316544	Δλ	63.5417
log Δφ	7.482537		
<i>y</i>	145,000.00		
ϕ' (by interpolation)_	' "	λ (central mer.)	74 40 60.000
Δφ			+ 1 03.5417
φ	34 13 53,2380	λ	74 41 63.5417
	164.18 mm		8.50 mm

Explanation of form:

$$x'=x-K$$

$$S_g = x' - \frac{x'^3}{(6\rho_\sigma^2)_g}$$

$$S_m = \frac{1}{R} \left(\frac{1200}{3937} \right) S_q$$

R=scale reduction factor

 ϕ' is interpolated from table of y

$$\Delta \phi = C S_m^2$$

$$\phi = \phi' - \Delta \phi$$

$$\Delta \lambda_1 = S_1 A \sec \phi$$

 $\log S_1 = \log S_m - \text{cor. arc to sine}$

 $\log \Delta\lambda {=} {\log \Delta\lambda_1} {+} {\rm cor.}$ are to sine

 $\lambda = \lambda$ (central mer.) $-\Delta \lambda$

State	J	STATION	
x	1,975,000,00	$\log S_{\sigma}$ $\log (1200/3937)$ $\log (1/R)$ $\log S_{\pi}$	9.48401583
$S_{\mathfrak{g}}$ 3 $\log x'$ $\log 1/(6\rho_{\mathfrak{g}}^2)_{\mathfrak{g}}$	- 24, 999, 99 13, 193, 82003 4, 581 0213	cor. arc to sine $\log S_1$ $\log A$ \log sec ϕ	- 16 3,84196643 8,50913716 0,11169374
$\log S_{\pi^2}$ $\log C_{-}$	7.748413	log Δλ ₁ cor. sine to arc log Δλ Δλ	2,502/9737 + 18 2,502/9755 3/7.83/9
y ϕ' (by interpolation	9,080899 155,000.00 00) 39 15 320835	λ (central mer.)	74 40 00.000
Δ φ	- ,/205 34 /5 31.4630 98.57 mm		T 5 17.8319 74 45 17.8319 42.76 mm

Explanation of form:

$$x' = x - K$$

$$S_g = x' - \frac{x'^3}{(6\rho_o^2)_g}$$

$$S_m = \frac{1}{R} \left(\frac{1200}{3937}\right) S_g$$

R=scale reduction factor

 ϕ' is interpolated from table of y

$$\Delta \phi = C S_m^2$$

$$\phi = \phi' - \Delta \phi$$

$$\Delta \lambda_1 = S_1 A \sec \phi$$

 $\log S_1 = \log S_m - \text{cor.}$ are to sine

 $\log \Delta\lambda {=} {\log \Delta\lambda_1} {+} {\rm cor.}$ are to sine

 $\lambda = \lambda$ (central mer.) $-\Delta \lambda$

11-11521

State	V.J	STATION	
x	1,995,000.00	log S _o	3,69897000
K	2,000,000.00	log (1200/3937)	9.48401583
x' (=x-K)	- 5,000.00	log (1/R)	1086
$x'^3/(6\rho_o^2)_o$		$\log S_m$	3,18299669
S_{σ}	- 5,000.00	cor. arc to sine	
		$\log S_1$	3.18299669
3 log x'	11.09691000	log A	8.509 13 612
$\log 1/(6\rho_0^2)_g$	45810213	log sec φ	0.11134929
	15,6779313	log Δλ ₁	140348210
	·	cor. sine to arc	+
$\log S_m^2$	6 34 5 99338	log Δλ	1.803 48211
log C	1.317613	Δλ	63,6037
log Δφ	7.483606		
<i>y</i>	170,000.00		
φ' (by interpolation)		λ (central mer.)	74 40 00.0000
Δφ			7 1 03.6037
φ	36 18 00,3388	λ	74 4\$ 03.6027
	1.04 mm		8,64 mm

Explanation of form:

$$x'=x-K$$

$$S_g = x' - \frac{x'^3}{(6\rho_g^2)_g}$$

$$S_m = \frac{1}{R} \left(\frac{1200}{3937} \right) S_q$$

R=scale reduction factor

 ϕ' is interpolated from table of y

$$\Delta \phi = C S_m^2$$

$$\phi = \phi' - \Delta \phi$$

$$\Delta \lambda_1 = S_1 A \sec \phi$$

 $\log S_1 = \log S_m - \text{cor. arc to sine}$

 $\log \Delta\lambda {=} \log \Delta\lambda_i {+} \mathrm{cor.}$ are to sine

 $\lambda = \lambda$ (central mer.) $-\Delta \lambda$

Geodetic positions from transverse Mercator coordinates

			3984
x	1,975,000	log S _g	4.39794+75
.C	2	log (1200/3937)	9.48401583
x' (=x-C)	- 25,000	log (1/R)	1046
x' ³ /(6 ² / ₀) ₈	01	log S _m	-3 48196453
Sg	01 - 24,959.95 - 5,000.01	cor. arc to sine	- /6
	3	log S ₁	3.88196834-
log S _m ²	7.76393688	log A	8,50913785-10
log C	1.316544	log sec ø	0.11092377
log Δø	9.0804 87	_log Δλ ₁	-2,50203076
		cor. sine to arc	+ 17
у	145,000	log \(\Delta \)	2,50203053
ϕ' (by interpolation)	39 /3 532428	Δλ	- 317.709
- Δφ	- ,1203	λ (central mer.)	74 40 00.000
φ	39 /3 53. / 22 \$	Δλ	5 17.70
•	163.82 mm	λ	74 45 17.704
	·		17.708

)

<·	log S _g	
C	log (1200/3937)_	9.48401583
x' (=x-C)	log (1/R)	
x' ³ /(6(° ₀ ²) _g	log S _m	
S _g	cor. arc to sine	
	log S ₁	
log S _m ²	log A	
log C	log sec ø	
log Δφ	log Δλ ₁	
	cor. sine to arc	+
у	log Δλ	"
ø'(by interpolation)	Δλ	0 , 11
Δφ	—————————————————————————————————————	0 , "
φ	Δλ	
	λ	
	·	·

Explanation of form:

$$x' = x - C$$

 $S_g = x' - \frac{x'^3}{(60^2)_g}$

$$S_m = \frac{1}{R} \left(\frac{1200}{3937} \right) S_g$$

R = scale reduction factor

 ϕ' is interpolated from table of y

$$\Delta \phi = C S_m^2$$

$$\phi = \phi' - \Delta \phi$$

$$\Delta \lambda_1 = S_1 A \sec \phi$$

 $log S_i = log S_m - cor. arc to sine$

 $\log \, \Delta \lambda = \log \, \Delta \lambda_1 + \, \text{cor.}$ arc to sine

$$\lambda = \lambda (\text{central mer.}) - \Delta \lambda$$

	PLANE COORDINATES ON TRANSVERSE MERCATOR PROJECTION						
	State M. Station Swamp 1935 Field Positi						
V			λ (Central meridian)	14° 40 "			
	\$ 39	15 41.450	λ	74 42 21.326			
		Δ	(Central meridian-λ)	- 2 21.326			
		y	Δλ(in sec.)	-141.326			
1	_log $\Delta\lambda$	2.15022207	log S _m ² x+00.000,000	7.059950			
	Cor. arc to sine	3	log C*	1.317259			
	log Δλ ₁	2.15022204	_log $\Delta \phi$	8.377209			
	log cos φ	9.88888990					
	colog A	1.49086291	φ	39° 15′ 41."450			
	log S ₁	3.52997485	= log S, + cor sinco ar	+200 0.0238			
	Cor. sine to arc	+ 2	φ'	41.4738			
	log S _m	3.52997487	= \(\Delta\chi_1 \cos \rho \)	¹ S			
	log 3937/1200	0.51598417_	Tabular difference	101.17317			
	_log R		of y for 1" of ϕ'	/8 ₂ 3\			
	log Sg	4.04594818	_y (for min. of φ')	151,754.01			
	log Sg ³	12.1378		+ 4 196.04			
	log 1/6 % R2	4.5810213	S S 2	-155950.05			
	$\log (S_g^3/6 f_o^2)_g$	6.7188					
			$\log \sin \frac{\phi + \phi'}{2}$	∞ DA			
	Sg	- 11,115.99	istance in meter & gol p	= m8			
	$(S_g^3/6 c_o^2)_g$	int to central mendian red	log Δα ₁ mel no all pol	S, =			
	x'	point to central meridian	grid distance in feet from	- S2			
		2,000,000.00	log (Δλ) ³	R = sq			
-5	x scale reduction	1,988,884.01	- log F - of y in minutes and tabula	Values			
3	11900012131 01800 1	are given in auxiliary table	d gol				
		Most Alburgary in Manial A depos	Δα ₁	"			
			b	"			
			Δα	0 , "			
			Δα				

^{*} Take out C first for ϕ and correct for approximate ϕ' .

x = 2,000,000.00 + x'

$$\chi' = S_g + \left(\frac{S_g^3}{6 \rho_0^2}\right)_g$$

$$S_g = \frac{3937}{1200} S_m R$$

 $log S_m = log S_1 + cor.$ sine to arc

$$S_1 = \frac{\Delta \lambda_1 \cos \phi}{A}$$

 $\log \Delta \lambda_1 = \log \Delta \lambda - \text{cor. arc to sine}$

$$\left(\frac{S_g^3}{6\,\ell_0^{\,2}}\right)_g \; = \; \frac{S_g^{\,3}}{6\,\ell_0^{\,2}\,R^2}$$

$$\phi' = \phi + \Delta \phi$$

$$\Delta \phi = C S_m^2$$

$$\Delta \alpha = \Delta \lambda \sin \frac{\phi + \phi'}{2} + F(\Delta \lambda)^3$$

 S_m = distance in meters from point to central meridian

 S_1 = distance in meters from point to central meridian reduced to sine

 S_g = grid distance in feet from point to central meridian

R = scale reduction factor

Values of y in minutes and tabular difference for one second, scale reduction factors, colog A, and log C are given in auxiliary tables.

REVIEW OF AIR PHOTO COMPILATION NO.

Chief of Party: E. H. Kirsch

Compiled by: F. H. McBeth

Project: H. T. 205

Instructions dated: May 16th, 1935

- 1. The charts of this area have been examined and topographic information necessary to bring the charts up to date is shown on this compilation. (Par. 16a, b,c,d,e,g and i; 26; and 64)
- Change in position, or non-existence of wharfs, lights, and other topographic detail of particular importance to navigation which affect the chart, is discussed in the descriptive report. (Par. 26; and 66 g,n)
- 3. Ground surveys by plane table, sextant, or theodolite have been used to supplement the photographic plot where necessary to obtain complete information, and all such surveys are discussed in the descriptive report. (Par. 65; and 66 d,e)
- 4. Blue-prints and maps from other sources which were transmitted by the field party contain sufficient control for their application to the charts. (Par. 28)
- 5. Differences between this compilation and contemporary plane, table and hydrographic surveys have been examined and rectified in the field before forwarding the compilations to the office and are discussed in the descriptive report.
- 6. The control and adjustment of the photo plot are discussed in the descriptive report. Unusual or large adjustments are discussed in detail and limits of the area affected are stated. (Par. 12b; 44; and 66 c,h,i)
 - 7. High water line on marshy and mangrove coast is clear and adequate for chart compilation. (Par. 16a, 43, and 44)

NOTE: Strike out paragraphs, words or phrases not applicable and modify those requiring it. Paragraph numbers refer to those in the Topographic Manual. Refer also to the pamphlet "Notes on the Compilation of Planimetric Line Maps from Five Lens Air Photographs."

- 8. The representation of low water lines, reefs, coral reefs and rocks, and legends pertaining to them is satisfactory. (Par. 36, 37, 38, 39, 40, 41)
- 9. Recoverable objects have been located and described on Form 524 in accordance with circular 30, 1933, circular letter of March 3, 1933, and circular 31, 1934. (Par. 29, 30, and 57)
- 10. A list of landmarks was furnished on Form 567 and instructions in the Director's letter of July 16, 1934, Landmarks for Charts, complied with. (Par. 16d, e; and 60)
- 11. All bridges shown on the compilation are accompanied by a note stating whether fixed or draw, clearance, and width of draw if a draw bridge. Additional information of importance to navigation is given in the descriptive report. (Par. 16c)

 Overhead Electric Cable. Near lat. 39°17.8/long 74°40.6 Towers about 150' high, clearance about 100'
- 12. Geographic names are shown on the overlay tracing. The accepted local usage of new names has been determined and they are listed in the report, together with a general statement as to source of information and a specific statement when advisable. Complete discussion of place names differing from the charts and from the U.S.G.S. Quadrangles is given in the descriptive report, together with reasons for recommendations made. (Par. 64, and 66k)
- 13. The geographic datum of the compilation is N.A. 1927 and the reference station is correctly noted. Unadjusted.
- 14. Junctions with adjoining compilations have been examined and are in agreement. (Par. 66j)
- 15. The drafting is satisfactory and particular attention has been given the following:
 - Standard symbols authorized by the Board of Surveys and Maps have been used throughout except as noted in the report.
 - The degrees and minutes of Latitude and Longitude are correctly marked.

- 3. All station points are exactly marked by fine black dots.
- 4. Closely spaced lines are drawn sharp and clear for printing.
- 5. Topographic symbols for similar features are of uniform weight.
- All drawing has been retouched where partially rubbed off.
- 7. Buildings are drawn with clear straight lines and square corners where such is the case on the ground.

(Par. 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48)

- No additional surveying is recommended at this time.
- Remarks: None

Examined and approved;

Remarks after review in office: There are no previous surveys 19. covering this area. Hydrographic + Topographic surveys are contemplated for this area in 1937. Corrections + additions to T-5643 as a result of these surveys will be made when this work is completed. Reviewed in office by:

Examained and approved:

Chief, Section of Field

Division of Charts

Chief, Division of Hydrography

and Topography.