9924

2000 4000 4000 Diag. Cht. No. 8863-2.

Form 504

U. S. COAST AND GEODETIC SURVEY

DEPARTMENT OF COMMERCE

DESCRIPTIVE REPORT

Type of Survey Topographic

Field No. Ph-34 (48) Office No. T-9924

LOCALITY

State Alaska

General locality Andreanof Islands

Locality Bobrof Island

194443-54

CHIEF OF PARTY
S.B.Grenell, Chief of FieldParty
L.W.Swanson, Div. of Photo. Wash., D.C.

LIBRARY & ARCHIVES

DATE November 10, 1959

8-1870-1 (!)

DATA RECORD

T-9924

Project No. (II): CS-218

Quadrangle Name (IV):

Bobrof Island

Ph-34(48)

Field Office (II): Ship EXPLORER

Chief of Party: S. B. Grenell

Photogrammetric Office (III): Washington, D.C. Officer-in-Charge: L.W. Swanson

Instructions dated (II) (III): 19 March 1952

20 February 1953

Copy filed in Division of Photogrammetry (IV) Office files

Method of Compilation (III): Shoreline & photohydros by graphic methods

Topography by Reading Plotter, Model "B"

Manuscript Scale (III): 1:20,000

Stereoscopic Plotting Instrument Scale (III): 1:20,000

Scale Factor (III):

1.0

Date received in Washington Office (IV) 3 23 Date reported to Nautical Chart Branch (IV): 2-28-55

Applied to Chart No.

Date:

Date registered (IV): 6 May 1957

Publication Scale (IV):

Publication date (IV):

Geographic Datum (III): N.A. 1927

Vertical Datum (III):

Mean sea level except as follows:

Elevations shown as (25) refer to mean high water Elevations shown as (5) refer to sounding datum i.e., mean low water or mean lower low water

Reference Station (III): ROF 1943

51 54 08.945 Long.: 177 25 02.005

Adjusted -Unadjusted-

Plane Coordinates (IV):

State: U.T.M.

Zone:

X=

Roman numerals indicate whether the item is to be entered by (II) Field Party, (III) Photogrammetric Office, or (IV) Washington Office.

When entering names of personnel on this record give the surname and initials, not initials only.

Areas contoured by various personnel (Show name within area)
(II) (III)

DATA RECORD

1953 Field Season Field Inspection by (II): Interior inspection: None Date: Shoreline inspection by: C. W. Clark 1954 Field Season

Date: Planetable contouring by (II):

Date: Completion Surveys by (II):

Mean High Water Location (III) (State date and method of location):

Field Inspection of Photographs (1954 Field Season)

Projection and Grids ruled by (IV): A. Riley Date:

Date: Projection and Grids checked by (IV): A. Riley 10--6-54

Oct. 1954 Control plotted by (III): C. O. DeMarr Date:

L. C. Lande Date: Oct. 1954 Control checked by (III):

J. Amburn

Nov. 1954 Radial Plot 87/98889696968 S. G. Blankenbaker

Date: Louis Levin Nov. 1954 Stereoscopic Instrument compilation (III):

Date: Contours

Shoreline 1/10,000 - S. G. Blankenbakente: Nov. 4 154 Manuscript delineated by (III):

Topo 1/20,000 - J. B. McDonald Dec. 1954

Photogrammetric Office Review by (III): Shoreline Compilation Date: Nov. 1954

by Roscoe J. French

Stereo. Instrument Compilation Jan. 1955

by Orvis N. Dalbey

Date: Elevations on Manuscript Jan. 1955

checked by (II) (III): Orvis N. Dalbey

> Form T-Page 3 M-2618-12(4)

Camera (kind or source) (III): U.S. C. & G.S. Nine lens camera, model B',

f = 8.25 inches [Also D' camera]

	, - , -	PHOTOGRAPHS (III)	£11.30	Combi	(10047)
Number	Date	Time	Scale		Stage of Tide
14668	7-16-43	2:53	1:10,000)	
14669	7-16-43	2:53	19		
14670	7-16-43	2:54	Ħ	Computed	1.3 ft. above MIIW
14671	7-16-43	2:54	tì	-	•
14672	7-16-43	2:56	11		
14673	7-16-43	2:57	Ħ		
14674	7-16-43	2:57	tt .		
34331	10-16-51	11:06	1:20,000		3.0 EMZ
34332	10-16-51	11:07	lt [*]	Computed	2.8 ft. above MLLW
34335	10-16-51	11:18	n	-	
34336	10-16-51	11:19	, 11		•
18-1-198	9-20-48	13:31 - 1340	1:10000	EUR	2.0 above MLLW
thru - 208		Tide (III)		Ratio of	Diurnal Mean EXMON

Reference Station:

Sweeper Cove

Supersimate: Station:

Use Sweeper Cove time for Bobrof

Suberdinete Citation \Use .9 for ratio of ranges

Washington Office Review by (IV): Evereff H. Ramey

Final Drafting by (IV): R. Kelly

Drafting verified for reproduction by (IV): Zura O. Zhallin

Proof Edit by (IV):

Land Area (Sq. Statute Miles) (III): 3

Shoreline (More than 200 meters to opposite shore) (III): 10 miles Shoreline (Less than 200 meters to opposite shore) (III): None

Control Leveling - Miles (II): None

Number of Triangulation Stations searched for (II): 5

Recovered: Recovered:

Identified:

Identified:

Date:

Range

Ranges

Range

Date: ///pri/ 1955

Date: 8-29-56

3.3 Bobrof

Number of BMs searched for (II): None

Number of Recoverable Photo Stations established (III): 2

Number of Temporary Photo Hydro Stations established (III):

1 Recoverable topographic station identified for horizontal control.

29

M-2618-12(4)

175° T 53° 52 (Joins No. 14) OZY S Z Ì 21.15.15 マ [x]E .44.74 .05.74) Ö Ŋ 0 ш œ -SH.01-LL1 ",-00,E1-LL1 \mathcal{P} Ω Z z <u>`</u> ⋖ ĸ \Diamond E 7 B Q, .82 Timoga Pass 11#k1. 0.0 T-8027 DELAROF ISLANDS 179°30' 53° Amehilta 52° (31 ,OM 2010L)

TOPOGRAPHIC MAPPING PROJECT PH-34

Part

ALASKA

Aleutian Islands

Summary to Accompany Topographic Map T-9924

This map is one of Project Ph-34. It covers Bobrof Island of the Aleutian Islands.

This map was compiled in 1954 by a combination of graphic and Reading Plotter methods. Field work, in advance of compilation, included the establishment of some additional horizontal and vertical control, complete shoreline inspection and the investigation of geographic names. Coast Pilot Notes and hydrography were also done in conjunction with the field work.

Compilation of the shoreline was done at a scale of 1:10,000 using nine-lens photographs taken in 1943. This compilation was reduced to 1:20,000 scale for a base for contouring, using nine-lens photographs at a scale of 1:20,000 taken in 1951. The compilation at a scale of 1:10,000 was because of the clarity of the 1:10,000 1943 photographs. This was only an expedient in the compilation process and the compilation was not retained. Map T-9924 was not field edited. After the addition of hydrographic information the map will be published by the Army Map Service as a standard topographic quadrangle.

Items registered under T-9924 will include a descriptive report, a copy of the manuscript at a scale of 1:20,000 and a copy of the published map.

FIELD INSPECTION REPORT

For Map T-9924

2. Areal Field Inspection

The entire area of Bobrof Island is covered by this one map.

Bobrof Island is a relatively small island about $2\frac{1}{2}$ miles north and south by 2 miles east and west in extent.

The upper part of the island is usually cloud covered and there has been very little opportunity to observe higher elevations.

The elevation of the highest point of the island is 2419 feet. This point is triangulation station Bobrof Volcano, 1943. The high point appears to be a single peak without a crater. Partly surrounding the highest peak and at a lower elevation is part of the rim of a Caldera. * 2421 MSL SHE

The terrain is very rugged and rises steeply from the water on the south, west and east sides. At the north point of the island is a large block of lava about 400 meters long, 200 meters wide and 400 feet high connected to the main part of the island by a low neck. This block of lava rises vertically from the water on the northeast, northwest and southwest sides and from seaward appears nearly level on top. There is a prominent inverted V slide with station SPAR at the apex on the west side. The south end of the lava block is a steep grass covered slope.

There is no evidence of any recent volcanic activity on the island.

The island is completely covered with 1:10,000 scale nine-lens photographs taken in 1943. The quality of these photographs is good. The quality of 1:20,000 scale nine-lens photographs taken in 1951 is generally poor. The latter photographs were not used for field inspection although an attempt was made to identify some of the horizontal control stations on them.

Two flight lines of 1:10,000 scale single-lens photographs cover the shoreline on the east and west sides of the island. The quality of these photographs is good. They were used to supplement 1:10,000 scale 9-lens photography.

All shoreline was field inspected. Field inspection is considered adequate for the area.

3. Horizontal Control

(a) The following supplemental horizontal control stations were established by fourth-order theodolite observations:

SPAR, 1953 BOBO, 1954

- (b) All horizontal control is computed on the N. A. 1927 datum and no datum adjustments are necessary.
- (c) All horizontal control was established by the U. S. Coast and Geodetic Survey.
- (d) No specific stations were required by the instructions. Four stations were identified on each of four points, of the island and they should be sufficient to control scale and orientation of the photogrammetric plot. Station BOBO, 1954 was identified but is not intended for horizontal control because of its close proximity to BOBROF (USN), 1943.

Peaks identified for vertical control P-001, P-002 and P-003 are not considered suitable for horizontal control. Geographic positions of these peaks have been computed.

- (e) All Coast Survey stations were searched for and recovered.
- (f) The following horizontal control stations were identified:

Station	Photograph	Order of Accuracy
BOBROF (USN), 1943	14672, 34336	Second
DOC, 1943	14672	Third
ROF, 1943	14673, 48-D-202	ll .
BO, 1943	14671	11
SPAR, 1953	14677, 34332	Fourth

4. Vertical Control

- (a) There are no bench marks within the area of this map.
- (b) Elevations were established by trigonometric leveling by observations at station BOBROF (USN), 1943 and other triangulation stations on adjacent islands. Elevations are based on observations on the water surface.

Elevations were computed for all points identified for horizontal control. The vertical datum used is mean high water based on the stage of the tide computed from the tide tables at the time of observations on the water surface. The datum thus established is probably within 1 foot of mean high water. All elevations are thought to be well within the limits of accuracy required.

Only one zenith distance was observed on P-004 and a check was not obtained on the elevation.

Identification of vertical control points P-001, P-002 and P-003 was done aboard ship without benefit of a good horizontal view of the peaks (they are usually cloud covered), by stereoscopic examination of the best model available. Identification of these points is indicated as doubtful. Elevations are on the highest points of the peaks.

(c) Vertical control points were identified as follows:

No.	Horizontal		Elevation in feet
		hotograph No.	above MHW
~ ~	BOBROF (USN), 1943	14672	231
P-001	Bobrof Volcano, 1943	14673	2419
P~002	<u>-</u>	14673	2105
P-003		14670	1902
P-004	SPAR, 1953	14667, 34332	402

Vertical control points identified are indicated on manuscript CS-295.

(d) Vertical control established is considered adequate for stereo-scopic mapping.

5. Contours and Drainage

Contouring is inapplicable. Drainage is obvious and well defined on the photographs.

6. Woodland Cover

None exists. Vegetation is grass and other low plants.

7. Shoreline and Alongshore Features

- (a) All shoreline was field inspected from a launch running as close inshore as was safe. The mean high-water line was indicated at random intervals and most of it is obvious on the photographs. Shoreline inspection was done partly in 1953 and partly in 1954.
- (b) The low-water line was not defined. Most of the shoreline is very steep and the low-water line and high-water line are the same. In a few places on boulder beaches the low-water line is a very short distance outside the high-water line.
- (c) The foreshore is mostly boulders with some steep rock cliffs rising vertically from the water. The different types of shoreline are indicated on the photographs.
- (d) Bluffs and cliffs rise up steeply from the water along the entire shoreline except on either side of the low neck connecting the lava block at the north end to the main part of the island. Types of bluffs and cliffs are indicated on the photographs in various places.
 - (e) There are no shoreline structures on the island.

8. Offshore Features

Offshore features are very few and consist of several rocks all of which are very close to the shoreline. The approximate offshore limit

of kelp is indicated on the photographs. The inshore limit of hydrography is not shown on manuscript CS-295. Boat sheets will be forwarded to the Washington office at the close of the field season. The inshore limit of hydrography follows the general offshore limit of kelp and defines kelp areas better than that indicated on the photographs.

Heights of rocks were estimated either above mean high water or above the water surface at the time of field inspection. In the latter case the time and date are noted on the photographs.

9. Landmarks and Aids

There are no recommended landmarks and there are no aids to navigation within the area of this map.

10. Boundaries, Monuments and Lines

Inapplicable.

11. Other Control

Recoverable topographic stations established are SPAR and BOBO. Geographic positions of these two stations were computed from fourth-order theodolite observations.

Photo-hydro stations established are listed on extra pages at the end of this report.

The geographic position of photo-hydro station COP was computed from fourth-order theodolite observations.

The approximate locations of recoverable topographic stations and photo-hydro stations are indicated on manuscript CS-295.

12. Other Interior Features

Covered under Side Heading 2.

There are no known structures on the island. The ruins of a trappers cabin are visible on the photographs on the low neck near the north end of the island. Only the floor remains intact.

13. Geographic Names

To be reported in a separate report in connection with other phases of field work.

Charted names on this map are: BOBROF ISLAND, BOBROF VOLCANO and BERING SEA.

The name KANAGA SOUND applying to the water area south of Bobrof Island was recommended during the 1953 season. See "Special Report on Geographic Names - Tanaga and Kanaga Islands - USC&GSS EXPLORER - Season 1953."

14. Special Reports and Supplemental Data

Supplemental data include other phases of field work completed during the current season - hydrography, Coast Pilot Notes and geographic names - to be forwarded later.

Data forwarded with this report are:

Field and office photographs.

Manuscript CS-295.

Control station identification cards for horizontal and vertical control.

Descriptions of recoverable topographic stations.

Computations of triangles for fourth-order stations.

Computations of geographic positions for fourth-order stations.

Computations of elevations from zenith distance observations.

Other data to be forwarded at close of field seasons are:

Observations of horizontal directions, fourth-order. Lists of horizontal directions, fourth-order. Observations of zenith distances.

Abstracts of zenith distances.

Recovery notes, triangulation stations.

Boat sheet EX-2154.

15. Field Inspection Notes

Photographs on which horizontal control identification notes appear are listed under Side Heading 3, Horizontal Control.

Photographs on which vertical control identification notes appear are listed under Side Heading 4, Vertical Control.

Photographs on which photo-hydro stations are identified are listed on the list of photo-hydro stations at the end of this report.

Photographs on which other field inspection notes appear are:

14667 thru 14674. 9-20-48-D-200 thru 207.

16. Advance Manuscripts

Manuscripts CS-295, scale 1:10,000, compiled in 1943 was used for shoreline, plotting photo-hydro control, etc. for boat sheets.

* See Chart Letter 6 277 (1945) for report on c5-295. EHR

The datum on manuscript CS-295 is not indicated but is apparently Unalaska Datum. The N. A. 1927 datum was plotted on the manuscript from control stations plotted thereon.

The scale of the boat sheet is 1:20,000 and a photographic reduction of the manuscript was made at the Navy Photo Lab., Adak, for transfer of shoreline to the boat sheet.

There appears to be slight discrepancies in scale and orientation of the manuscript but it was entirely satisfactory for the uses made See 564 of it.

Respectfully submitted

Charles W. Clark Commander, USG&GS

Approved and forwarded:

S. B. Grenell Comdr., USC&GS Chief of Party

PHOTOGRAMMETRIC PLOT REPORT T-9924 Ph-34 (48)

- 21. Area covered .- The manuscript covers Bobrof Island, Alaska, only.
- 222. Method. The island is covered with 1:10,000 scale nine lens positype photographs taken in 1943 and with 1:20,000 scale nine lens metal mounted photographs taken in 1951. The 1:10,000 scale photography was used for field inspection. Field inspection: also some single-lens photographs. See § 2

The decision was made to lay two radial plots covering the island using both sets of photography. The 1:10,000 scale plot was assembled first and was used for shoreline compilation, location of photo-hydro signals, and for providing supplemental control for the 1:20,000 scale plot. (Five pass points were pricked that were common to both sets of photography.)

This plot report covers the two plots.

Manuscripts were ruled at 1:10,000 and 1:20,000 scales with polyconic projections and UTM Grids.

No master templet exists for the 1:10,000 scale photography. The 1951 master templet was used in preparation of the templets from the 1951 photography.

The closure and adjustment to control was satisfactory on both plots.

Photographs used in the plots:

1:1	0,000 scale	1:20,000	O scale
14668 14669 14670 14671	14672 14673 14674	34331 34332	34335 34336

23. Adequacy of control. - Stations P-001 (Bobrof Volcano USN, 1943); P-002, 1954; and P-003, 1954, were not held in the 1:10,000 scale plot. Radial plot positions 0.8 mm and 0.5 mm. off their plotted positions have been drilled and circled on the manuscript. On page 8 of the field inspection report these stations are rated as "not considered suitable for horizontal control". The intersections of radials for these points were fairly good considering the elevations of the stations and definitely fell off the plotted positions seemingly indicating tilt in the photography was not the reason for failure to hold the stations. The error is apparently in the selection of the photograph positions or in the computation or

observation of the Geographic Positions.

These control points (P-001; P-002; P-003) were not transferred to the 1:20,000 scale photography.

Bobrof (USN), 1943- Sub. Sta. No. 2, is the only other station considered as control for the plot that was not held within.0.2 mm. Bobrof (USN) 1943 (home station) and Bobo, 1954 (topo station) in the immediate vicinity were held in the 1:10,000 scale plot. Bobo, 1954, was used to control the 1:20,000 scale plot in the area.

- 24. Supplemental Data .- inapplicable.
- 25. Photography. The 1:10,000 scale photography is adequate for radial plotting. The 1:20,000 photograph, flight lines are not the best for radial plotting.

Submitted by:

S. G. Blankenbaker

November 4, 1954

Approved by:

pe d. French

्राजी १६७५ स्टूडिंग

COMPILATION REPORT

31. Delineation:

The shoreline was delineated by graphic methods from the 1:10,000 scale photographs by the Graphic Compilation Section. A photographic reduction was then made and transferred to the 1:20,000 scale manuscript by holding to the common pass points.

The contours and drainage were then compiled on the nine-lens plotter from the 1:20,000 scale photos and added to the manuscript. Although a single pair of photographs covered the entire island, it was necessary to use two models because of the cloud coverage on both models.

Except for some shadow areas on the steep bluffs, no unusual difficulty was encountered during instrument compilation.

32. Control:

Both models were set up using sea level, only, for vertical datum. The elevations of all vertical control points were read on the instrument, and these elevations checked very closely with those furnished by the field party.

The vertical control was more than adequate for 50' contours.

33. Supplemental Data:

There were none available.

34. Contours and Drainage:

See Item No. 31.

35. Shoreline and Alongshore Details:

The shoreline inspection was adequate and, except for a few small shadow areas, no unusual difficulty was encountered in delineating the H.W.L., alongshore details and offshore rocks.

36. Offshore Details:

Covered in side heading No. 35.

37. Landmarks and Aids:

See side heading No. 9.

38. Control for Future Surveys:

Forms 524 have been submitted for the two topo stations mentioned in paragraph 11. A list of the hydro and topo stations are included in "Notes to the Hydrographer".

39. Junctions:

Junction was made with T-9925 to the East and T-9932 to the South. There are no Junctions at the North and West limits.

40. Horizontal and Vertical Accuracy:

There are no areas believed to be of subnormal horizontal or vertical accuracy. Sep 366

46. Comparison with existing Maps:

Adak, Alaska 63 1:250,000 1951 Edition, Reprinted 1953

47. Comparison with Nautical Charts:

Chart No. 8863 Scale 1:300,000

Date of publication - 1951 Last correction date - 1/14/52

48. Geographic Names List:

See list of geographic names on following page.

49. Notes to Hydrographer:

A list of the topographic and hydrographic stations is on a separate page entitled, "Notes to the Hydrographer".

50. Compilation Office Review:

See enclosed Form T-2.

Approved:

S. V Griffith Chief, Cartographic Branch Respectfully submitted:

Onie M. E

Orvis N. Dalbey

Supervisory Cartographer

GEOGRAPHIC NAMES Survey No. 7-94	W+	/ .	Ac. of	S. M. C. L. C. L. C. L. C. C. L. C.	oge ation	Wod	O. Cuide of	Mod Merchi	N.S. Jake	<i>§</i>
Name on Survey	os A	Chor. Or	C \$0.\0.	D Provided	E E	or local for	. O.	asud H	\s ⁵ .\ \ K	
A.		[-				 -	- <u>u</u>	/ - : -	(= -``-	(= == =
Alaska		18	ov t	itle	}	 		<u> </u>	<u> </u> 	1
Andreanof Isla	nds	(,			/	 	ļ	 	<u> </u>	2
Bering Sea,										3
Bobrof Island					[1	[4
Bobrof Volcan	0]			<u> </u>				5
Redan Point									1	6
		~ (T	2	Bok	Lat	r		 -		j - · · ·
Kanaga Sound	(0	0 SE.	91.			ppv	rad	1	<u> </u>	7
				12-	2 -	54,	Ĭ .	-		8 .
				ļ 		r. He	4	 	ļ	 9
				ļ		 		<u>} </u>		10
	[` 		.	ļ			<u> </u> 	<u> </u>	<u> </u>	11
	<u> </u>								<u> </u>	12
						}				13
			 		}		}	 		14
	 	<u></u>	 !	}				}	}	[
							<u></u>		} <u>-</u>	15
					14		!	<u> </u>	ļ	16
	<u></u>			<u> </u> 	• •. 			ļ 	 	17
							<u> </u> 		<u> </u>	18
	,						<u> </u>			19
				<u> </u>]]	20
										21
					=	i — — — 	f			22
		<u></u>	<u>-</u>	<u> </u>	<u></u>		 	 	f·	
					<u> </u>				 	23
					<u> </u>	,			 	24
			<u> </u>	 -				 	 	25
						 				26
	ļ 				· - — — -		<u> </u>	<u>_</u>	 	27
	Í			[[ĺ	(ĺ	M 234

Notes to the Hydrographer

The following hydrographic and topographic stations were established in the field:

Photo-Hydro Stations

Name	Photograph	Description
AFT.	14671	WW on point of cliff
AIR.	14669	WW
BEE.	14668	WW on face of cliff
CAI.	14669	WW on boulder
COP.	14673	WW on point of rock
DEB.	14668	WW on boulder
ELK.	14667	WW on face of cliff
EST.	14673	WW on large boulder
FAG.	14668	Highest point of round top rock (No ww)
GEM.	14668	WW on boulder
HUB.	14669	WW on boulder at base of slide
IDA.	14669	WW on point of bluff
JUG.	14670	WW on W'ly high point of 20' rock
KID.	14669	WW on face of cliff
LIE	14670	WW
MAN.	14670	WW
NAG.	14671	Www on highest point of N'ly rock
OPE.	14672	WW
PET.	14671	WW
ROK	14671	Light colored rock (not used)
SAX.	14674	WW - east end of top of rock
SOB.	14672	MM
SOT.	14670	WW on point of bluff, left edge of large slide
TEE.	14672	Highest point of rock (not used)
TOP.	14670	Highest point of large rock (no ww)
TUG.	14674	WW on point of bluff
UNA.	14674	WW on boulder
USE.	14669	Spot of grass on bare spot on face of low bluff
WAG.	14674	WW on boulder

Topographic Stations

<u>Name</u>	<u>Photograph</u>
BOBO, 1954 SPAR, 1954	Not identified 34332

Review Report Topographic Map T-9924 11 April 1955

- 62. Comparison with Registered Topographic Surveys: None.
- 63. Comparison with Maps of Other Agencies: Adak, Alaska (USGS) 1:250,000 1951 Edition, reprinted 1953.

No discrepancies.

64. Comparison with Contemporary Hydrographic Surveys:

H-8057 1:60,000 1953 H-8141 1:20,000 1954 (Print of Boat Sheet)

No discrepancies indicated. New topographic positions result from T-9924 and will effect a revision of hydrography.

65. Comparison with Nautical Charts:

8863 1951, corrected to 52-1/14 9145, 1:40,000 1945, corrected to 51-8/13

Charts show the elevation of Bobrof Volcano as 2875. This elevation was determined during this survey as 2421 mean sea level. Chart 9145 shows a rock awash at latitude 51° 53.3 - longitude 177° 27.3 which was not inspected by the field party or could not be interpreted from the photographs. Map T-9924 was applied to Chart 9145 on 2 December 1954 but the new chart was not examined during this review. Changes made to T-9924 are shown in red on the map manuscript.

66. Adequacy of Results and Future Surveys:

This survey complies with project instructions and National Map Accuracy Standards.

Reviewed by:

Everett H. Kamey

APPROVED:

Chief, Review Section Photogrammetry Division

Chief, Photogrammetry Division

Chief, Nautical Chart Branch Charts Division

Chief, Coastal Surveys Division

DOC

BO

16		
		,
		1
		,
		L
		(
		L
		-
		Ph-21
		-
		Ā
	13	
	ss than third order	
	O. P.	PRO IECT NO
	-	-
	Po	- [
	7	Ē
	中	C
	п	0
	12	
	口口	
	02	
	Ses	
	H	
		4
		9924
		6
-		
-	2	AP T
		P
		Σ

Photogrammetry

МАР Т- 9924		PROJEC	PROJECT NO. Ph-34	SCALE OF MAP1.20,000	20,000	SCALE FACTOR 1.0	٦. 1.0
STATION	SOURCE OF INFORMATION (INDEX)	DATUM NA 1927	LATITUDE OR y-COORDINATE LONGITUDE OR x-COORDINATE	DISTANCE FROM GRID IN FEET. OR PROJECTION LINE IN METERS FORWARD (BACK)		N.A. 1927 - DATUM DISTANCE FROM GRID OR PROJECTION LINE IN METERS FORWARD (BACK)	FACTOR DISTANCE FROM GRID OR PROJECTION LINI FORWARD (RACK)
P-002 1954	suo		51-54 - 20.347	629.0 (1226.0)	*		
P-003 1954	itetu				*	i i	
P-004 1954 Spar	comp		30.			Less than 3rd-od	er accuracy.
Bobo 1954	Pield					Less than 3rd. o	order accuracy.
Cop. 144. 1954					*	hydrographic station	tá.
position *	computation	totion	rtical	1	on may	SWE,	
COMPUTED BY:L. C. a. L. a.	C.H.B.	B DATE.	E 10-11-511	Plotted by: C.O.	.D.	DATE	M - 2388 -12
The state of the s							

PHOTOGRAMMETRIC OFFICE REVIEW

T. 9924

1. Projection and grids2. Title3. Manuscript numbers4. Manuscript size
CONTROL STATIONS
5. Horizontal control stations of third-order or higher accuracy6. Recoverable horizontal stations of lea
than third-order accuracy (topographic stations)7. Photo hydro stations8. Bench marks
9. Plotting of sextant fixes
ALONGSHORE AREAS
(Nautical Chart Data)
12. Shoreline13. Low-water line14. Rocks, shoals, etc15. Bridges16. Aic
to navigation17. Landmarks18. Other alongshore physical features19. Other along
shore cultural features
PHYSICAL FEATURES
20. Water features 21. Natural ground cover 22. Planetable contours 23. Stereoscop
instrument contours 24. Contours in general 25. Spot elevations 26. Other physic
features
THE THE PARTY OF T
CULTURAL FEATURES
27. Roads 28. Buildings 29. Railroads 30. Other cultural features
BOUNDARIES
31. Boundary lines32. Public land lines
51. Bodiladiy lines 52. Fabile land lines
MISCELLANEOUS
33. Geographic names 34. Junctions 35. Legibility of the manuscript 36. Discrepance
overlay37. Descriptive Report38. Field inspection photographs39. Forms
40. Onie M. Dalby
Reviewer Supervisor, Review Section or Unit
41. Remarks (see attached sheet)
FIELD COMPLETION ADDITIONS AND CORRECTIONS TO THE MANUSCRIPT
42. Additions and corrections furnished by the field completion survey have been applied to the manuscript. The
manuscript is now complete except as noted under item 43.
Compiler Supervisor
43 Remarks: M.2623.11

D.y. of Photo

COMPUTATION OF TRIANGLES COMPUTATION OF ELEVATIONS COMPUTATION OF GEOGRAPHIC POSITOONS

Project 05-218 Ph-34

Map T-992L Bobrof Island, Alaska

1954 Season

SHIP EXPLORER

S. B. Grenell, Comdg.

DEPARTMENT OF COMMERCE U. s. coast and sedderic survey Form 25 Ed. Jan., 1929

COMPUTATION OF TRIANGLES

===		9121	<u> </u>		 	
	NO.	STATION	OBSERVED ANGLE	CORR'N SPHER'	L SPHER'L PLANE ANGLE EXCESS AND DISTANCE	LOGARITHM
		2-3	/ - 		İ	
	 	1 Bobrof Volcano	(0.2 1.2 (0.		 	4,469 889
· -			(93 1252			101000 684
	ļ	2 5HIP, 1943				9,927 882
		3 ARIES, 1953	28 53 56		· · · · · · · · · · · · · · · · · · ·	9.68418.6
	<u> </u>	1-3	<u> </u>	- 		4398455
<u></u> .		1-2	<u> </u>	· · · · · · · · · · · · · · · · · · ·	14281.0	4.154759
	· 			1	14286,7	4.154928
		g_2		i .		in a a with
	 	2-3 P-001	71 27 (1	·)		4.029144
- -		- BOOKOL NoTeamo"	38 28 56			10.206020
	·	2 0 KING	56 12 56	- 1		9,919672
		3 5HIP, 1943	85 18 08	(Use 1943 1	· :	19,998539
		1-3	_	- +	14283.6	4.154836
	<u> </u>	1-2	 	ļ	<u> </u>	4.233703
				· · · · · · · · · · · · · · · · · · ·		<u> </u>
in this			<u> </u>			
		2-3	<u>-</u>	·	+	
¥—		1	! !	; - †+	†	· • - ~
፱ ይ	 	2	<u> </u>	i -+	_	- + - · ·
H	<u> </u>	3		, 	<u> </u>	April A III
		1-3				
		1-2		1		;
				:		,
				} i		
	 	2-3				†
	} .	1		- +		* = :
	}	2	}	#- 1		•
	,	3		1	; }	• •
		1-3			i <u>ki</u> -	
		1-2		* * * * * * * * * * * * * * * * * * *		•
	†		<u>.</u>	† † -	+ · - ·	+

DEPARTMENT OF COMMERCE U. S. COAST AND GEODETIC SURVEY Form 25 Ed. Jan., 1929

COMPUTATION OF TRIANGLES

11--9121

	<u>p. 15</u> 1001 1 <u>350</u>	9121				===		
	NO.	STATION	OBSERVED ANGLE	CORR'N	SPHER'L ANGLE	SPHER'L EXCESS	PLANE ANGLE AND DISTANCE	LOGARITHM
		2-3	 					4,264720
		1 Peak P-002	(84 14 04))				0.002202
	Ħ	2 SHIP, 1943	46 50 26					9.862 997
	L.	3 SUDAK, 1953	48 55 30					9,877 285
		1-3					13,457	4.129919
		1-2			L			4.144207
					}	,		
	·	2-3	,				· ·	4,469 889
		1 Peak P-OOL	(93 33 49)) 			 	0,000841
<u></u>	F	2 5HIP, 1943	58 18 38					9,929883
	LA.	3 ARIES, 1953	28 07 33	 	! 		<u></u>	9.673398
		1-3] }		15154	4.400613
_		1-2			 		13935.7	4,144128
marg					<u></u>	Ĺ. <u></u>		
write in this			1					
ite		2-3	<u> </u>	- ·			·	4.029 144
	 -	1 Peak P-002	(39 2149)		; 			2-197747
Do not	ل	2 0 KING _	i		· 			9,917 332
	F	3 5HIP, 1943	84 52 42	·	ļ 	 		9,998 263
	·	1-3	 	·	! !	 	13938.7	4.14 4 223
		1-2		 				4.225154
					! 			
		0.2	1					1
.		2-3			} 1		 	4 -
-		1					· ·	• •
		2		·	• · ·		·	•
		3	<u> </u>	 	<u> </u>			<u> </u>
~		1-3			; + - ·	,		
	-	1-2			† ·			
	<u></u>				! 			(

DEPARTMENT OF COMMERCE U. S. COAST AND GEODETIC SURVEY FORM 25 Ed. Nov. 1946

COMPUTATION OF TRIANGLES

U. S. GOVE	ANMENT PRINTING OFFICE 18 60285 1 STATION	OBSERVED ANGLE	CORR'N	Spher'l angle	Spher'l excess	PLANE ANGLE AND DISTANCE	LOGARITHM
· · · - · · ·	T	پيره سهي د ديده د پيسان درستان دي	<u> </u>		er en		
	2-3-P-0-0-3					ļ	4.264720
	1 Peak	(85 03 47)	~				0.001614
6		44 12 46					9,843435
R		50 43 27				-	9.888801
	1-3					12876	4.109769
	1-2					14293.4	4.155135
		,		İ	:	1	
	2-3 2-00-3						4,029144
	1 Peak	37 44 30)					0.213176
K	2 0 KING	54 44 48		<u> </u>			9.912014
<u> </u>	3 SHIP, 1943	87 30 42					9,999590
9	1-3					14300.3	4.155344
	1-2						4.241910
	2-3						
- ·- 	1			 -			
	3						
	1-3	· · · · · · · · · · · · · · · · · · ·	_ 				
	1-2						
	0.2					,	
	2-3 1			 i			
	2			. 			
	3						
	1-3						
	1-2	····			 -		
	*			· ·	 		
	<u> </u>		 _		<u> </u>		

FOURTH-ORDER

DEPARTMENT OF COMMERCE U. S. COAST AND GEODETIC SURVEY FORM 25 Ed. Jan., 1929

COMPUTATION OF TRIANGLES

	11 	—9121	tate:					
	No.	STATION	OBSERVED ANGLE	CORR'N	SPHER'L ANGLE	SPHEE'L RICESS	PLANE ANGLE AND DISTANCE	LOGARITHM
		2-3	<u> </u>		ļ 	<u> </u>	12862.0	4.109 308
		1 O COP	90 24 40		 	<u> </u>	 	0,99997426
	6.P.	2 5HIP, 1943	4 42 17	<u>/</u>	 	 		0.08202065
		3 BOBROF(USN), 1943	84 53 03	/			<u> </u>	0.99601646
		1-3					1055.0	(3.023 252)
		1-2				 	12811.1.	(4.107 586)
	-			 				
		2-3					13692.8	4,136493
		1 0 cop	834102)	J 			0.993 93006
		2 Fox	4 23 34	1				0.076 59335
- -	7	3 BOBROF(UIN),1943		1				0.999 43663
		1-3					1055.2	
a .	7	1-2			Ī			
margin					j			
in this r								
write in		2-3	· · · · · · · · · · · · · · · · · · ·		 			
		1			 	 	· } -	
	- +	2					 	
		3				<u> </u>	(
<u>.</u>		1-3			! 	- <u>:</u>		
	_	1-2			 -			
		•					{ 	
					!			
·		2-3	·				(
		1					· · · · · · · · · · · · · · · · · · ·	
		2						
		3			<u> </u>	<u></u>	 	
		1-3						
	-	1-2						
- 								

Project Ph-34

DEPARTMENT OF COMMERCE U. S. COAST AND GEODETIC SURVEY FORM 25 Ed. Nov. 1946

FOURTH-ORDER

COMPUTATION OF TRIANGLES

U.S. GOVE	RUMENT, PRINTING OFFICE 16 50265-1	tare: ./.						···	
	STATION	OBSEI	RVED AN	GLE	CORR'N	Spher'l angle	SPHER'L EXCESS	PLANE ANGLE AND DISTANCE	LOGARITHM
·, · · · · ·	tu tuburubiteesi teeti tee	₋ /	4 - 7 - 4 5	7 <u>.</u> :- xe	.	.			
	2-3								41108774
	1 O SPAR	23	45	16	<u> </u>			~	0.394 892
!	2 NUB, 1943	2.5		21	-				9.638550
	3 50 DAK, 1953	130		23	-				9.881328
	1-3							13874.4	4.142216
	1-2								4.384994
						;			
	2-3				ļ		ļ		4.080 805
	1 O SPAR	13	3 3	53/					0.629776
	2500AK, 1953	150		32					
	3 ARIES, 1953	15		35					9,431691
	1-3							_	
	1-2						<u> </u>	13874.3	4,142272
							ļ 		,
							}		
	2-3								
	1 O SPAR						<u>.</u>		
	2 5UDAK, 1953			·					
	3 OMARS, 1953	15	٥٥	51			_		
e	1-3	 						 	
	1-2						<u> </u>		
		<u> </u>						<u>-</u>	
	,								
	2-3								_
	1								
·	.2								
	3								
	1-3								
	1-2			<u></u>		, ,			
				 .					
									.

FOURTH- ORDER

Project Ph-34

COMPUTATION OF TRIANGLES

DEPARTMENT OF COMMERCE U. S. COAST AND GEODETIC SURVEY Form 25 Ed. Jan., 1929

11-9121

NO.	STATION	OBSERVED ANGLE	CORR'N	SPHER'L ANGLE	Spher'l Excess	PLANE ANGLE AND DISTANCE	LOGARITHM
	2-3			-		/	5
		, <u> </u>			· •	57.53 m.	1.789 894
	1 0080 80800F	17 20 19			, _ -		0.525757
	/\(\). \(\)\(\)\(\)	_94_13_ \$7 b	/			·** ·	9,998 814
	3 BOBROF (USN), 1943	68 25 44		·	<u>-</u>		9.968 465
-	1-3		 			1.9.2.52 m	2-284465
	1-2			· · ·	· -	(<u>119-52-m</u> _	2.254116
		<u> </u>	l				
	2-3						_
	1	-					
	2						· -
	3						
	1-3						
	1-2						·
argin —							
not write in this margin			-				/
ii ii	2-3					52.6	Control dout
- arrite		, · · · · · ·		- - -		3 (18.3 m.)	11.759 894
- j	1 Sub. Sta. No. 1 BORROF 2 A STATION	83-40					0.002.659.
-å}	J J	38-11	/	-			9, 7.91.115.
. 	3 BOBROF(USN), 1943	58-08 -		→ <i>.</i> -+		 .,	9.929050
	1-3			- -			1.553668
	1-2		· · · · · · · · · · · · · · · · · · ·			49.16 m	1.691603
				-,			
_ [2-3						
	1	•			_]		
	2			_]			
	3		-	- 1	- 1		
	1-3		· · -	1			
	1-2						· - · · · · · · · · · · · · · · · · · ·
		sketch on	0 /				1 CD4

COMPUTATION OF

HORIZONTAL DISTANCE AND DIFFERENCE IN ELEVATION BOBROF (USN), 1943 TO A STATION

Log cos (2.D. -90°) = 9.982 269

Log 59.95 meters = 1.777 789

Log Hor. Dist. = 1.760 058

Hor. Dist. = 57.55 meters

Log sin (2.0.-90°)= 9.44718

Log 196.7 Fret= 2.29380

Log. Vert. Dist. = 1.74098

Vert. Dist. = -55.08 Feet

t = + 4.15 Feet

Diff. in Elev.

BOBROF to A station = -50.93 Feet.

Zenith Distance = 74° 29' 25"

808.80 F (USN), 1943

A' STATION

Log. c.s (90°-2.D.) = 9.983890 Log. 59.68 meters = 1.775829 Log. Hor. Dist. = 1.759719 Hor. Dist. = 57.51 meters Log. sin (90°-2.D.) = 9.42716

Log. 195.8 Feet = 2.29181

Log. Vert. Dist. = 1.71897

Vert. Dist. = - 52.36 Feet

t = - 2.60 Feet

Diff. in Elev.

Bobrof to A station = - 50.91 Feet

Mean Hor. Dist. = 57.53 meters Mean Diff. in Elev. = -50.92 Feet.

COMPUTATION OF ELEVATIONS AND REFRACTIONS FROM RECIPROCAL OBSERVATIONS

	₁ ==	<u></u>	,			
Station 1, occ.	500AK,1953	 				
				ļ		
Station 2, obs.	BOBROF .					
			· ·			
Mean of 51 1953+1954 065	89 48 39				······································	
\$2 1954 Obs.	90 16 51		-	·		
\$2-\$1	0 28 12	- 			· · · · · · · · · · · · · · · · · · ·	
1/2 (52-51)	0 14 06				- 	
1/2 (\(\zeta_2 - \zeta_1\) in secs.			,		·	
72.02				. 		
log ditto					· · · · · · · · · · · · · · · · · · ·	
T log tan	7.61295					
log s	4.07886					· ———
log [s tan ½ (ζ2-ζ1)]	1,01000					
			•			
	- -					
	1.69181					<u></u>
$\log (h_2 - h_1)$		·				
$\left \begin{array}{c} h_2-h_1\\ \end{array}\right $	49.18	· <u> </u>				·
<u>h</u> 1J	70.35					
2 log s			<u>- ·</u>			
$\log p = 9 - 2 \log s$	— — — —				 -	`
p of (h ₂ h ₁)						
α and mean φ						
ζ ₁ +ζ ₂ -180°						
$t_1 + t_2 - 180^{\circ}$ in sec.						
					 -	·
log ditto			<u></u>		<u> </u>	
log ρ						
$\frac{\text{colog } s}{\log \frac{\sin 1'}{2} = 4.38454}$						
			-			
$\log (0.5-m)$						
(0.5-m)	·					
p of (0.5-m)*						

^{*} Since (0.5-m) varies as e^{j} , the weight $p=\frac{e^{j}}{N}$, where N is constant for a set and is preferably a power of 10.

16-22601 U. S. GOVERNMENT PRINTING OFFICE

			BOBROF	BOBROF	BOOKOF	BOBROF
Station 1, occ.	5418,1943	NUB, 1443	(USN) 1943	(USN), 1947	(USA),1943	(USA), 1943
	7.7.		//	7,		
Ctation 0. 1	BORROF	BOBROF	D			BARNES
Station 2, obs.	(usn), 1943_	(USN).1943	PLUTO, 1953	PLUTO, 1453	5HIP, 1943	(USN), 1943
	Top of white	Tip of	T. p of		water surface	Ton Of
Object sighted	signal clath_	triped	Banner	Ground.	tangant of rock	Top of triped.
	147_4	1953 065.	1953 Ohs.	1954	1315 5/13/54	1954
ζ ₁	89 46 30	89 58 12	90 01 48	90 02 44	90 22 09	90 05 06
α and mean φ	155. 51-50	217 51-49	31 3/23	31 51-48	335 51-50	60 51-51
$\log (0.5-m)$	9.63246	9.63246	9.63246	9.63246	9.63246	9.63246
log s	4.10931	4.32405	4.33615		4.10931	4,20378
colog p	3.1953(3.19510		3,19521	3,19531	
			3.19521			3.19467
colog sin 1"	2.25 51	5.31443	5.31443	5.31443	5.31443	5 3 1 4 4 3
$\log (k \text{ in secs.})$	2.63131	2.46604	2.47825		2.25151	2.34534
k in secs.	178	292	301	301	178	221
$(90^{\circ} - \zeta_1 + k) \text{ in secs.}$	0 16 28	t 0 06 40	+ _00_3!_3_	+ 0 02 17	- 0 19 11	- 0 01 25
log ditto						
T tog tan	7.68034	7.28764	6.97113	6,82230	7.74665	6.61499
log s	4,10931	4.32405			4.10931	
$\log \left[s \tan \left(90^{\circ} - \zeta_1 + k \right) \right] $	1.78965					
	-1-\			-		
	<u> </u>					
						
$\log C$	<u></u>					
$\frac{\log (h_2 - h_1)}{}$	1.78965	1.61169	1. 30 728.	1.15845	1.85596	0.81877
h_2-h_1	+ 61.61	+ 40.90	- 20.29	-14,40	+71.77	- 6,59
h ₁	17,58	6, 32.40	h. 85,80	h- 85.80	hr + 0,52	hz 61.77
t-o	-0.03	- 2.08	+2.92	-1.26	-1.26	+ 1.03
Corrected elevation	73.16	h_ 71,22	h, 68.43	h. 70.14	h. 70.51	h, 69.57
	Reject	-	Reject			
$\log p = 9 - 2 \log s$			[-'f			· · · · · · · · · · · · · · · · · · ·
n		Mean	Elew. Bo	Q 18 15 / 12 Cal). 1941	_
Within the state of		IAII E EW		_	<u>,, </u>	-
Weighted mean eleration of sta. obs.			70.36			
			230.8	Feet		—— _{11—8945} ————

Station 1, occ.	ARIES, 1953	SHIP, 1943	OKING			
Station 2, obs.	Bobrof Volcom P-00+	8. 6 r o f Valcono P-001	Bobyof Volcano P-001			
Object sighted	Highest Point	Same	5			
\$1	1 .		87 36 44			
α and mean φ	254 52	161 52	122 52			
$\frac{\log (0.5-m)}{2}$		9,63246	-			
colog p		4.15493· 3.19539				
colog sin 1" log (k in secs.)	i	5.31443 VZ97V1		5.31443	5.81443	5.31443
k in secs.	347	198	237			
(90°-51+k) in secs.	1 41 32 , 40 09	2 54 00	<u>. 2- 27 13</u>			
log ditto	8,47046	8.70465	8.63195			
log s		4.15493				
$\frac{\log \left[s \tan \left(90^{\circ} - t_1 + k\right)\right]}{\log A}$						
$\log B$ $\log C$	2.86302				· 	
$\frac{\log\left(h_2 - h_1\right)}{}$	T	2.85958	2.86565	*_		
h_2-h_1	739.5	723.7	733.9.			
$\left.\begin{array}{c} h_1 \\ t-o \end{array}\right\}$	4.2	10.6.	3,4.		<i>i</i>	
Corrected elevation	745.3	7.36.0	738.9			
log p=9-2 log s	Ruget					
P	Mean	Elev 737.4	P-001 meters			
		2419	feet			11-5945

		·				
Station 1, occ.	AR1ES, 1953	SUDAK, 1953	SH 10, 1953	OKING		
Station 2, obs.	P-002 Peak A	Peak L	Peak A	P-002 Peak J		
	Highest Psint	Same	Same	50		
Object sighted			James			
	88 37 49	87 25 22	87 28 18	87 53 30		
α and mean φ	255 52	245 52	161 52	122 52		
$\log (0.5-m)$	9,63246	9.63246	9.63246	9.63246		
log s	4,40061	4,12992	4.14421	4.22515		
colog p	3.19446	3.19459	3.19539	3,19471		
colog sin 1"	5.31443	5.31443	5.31443	5.31443	5.31443	5.31443
$\log (k \text{ in secs.})$	2.54196	2.27140	2.28649	2.36775		
k in secs.	348	187	193	233		
$(90^{\circ}-\zeta_1+k)$ in secs.		2 37 45	2 34 SS	2 10 23		
	1 26 37					
r } /oa +zm	8.40839	8.66200	8.65412	8.57916		
log s	4.40061	4.12992	4,14421	4.22515		
$\log \left[s \tan \left(90^{\circ} - \zeta_1 + k \right) \right] \right]$						
$\log A$						
log B						
log C	2.8.223					
$\log (h_2 - h_1)$	2.80900	2.79 192	2.79833	2.80431		
x x x	644.2	619.3	628.5	637.3	·	
$\left. \begin{array}{c} h_2 - h_1 \\ h_1 \end{array} \right\}$	4,2	21.2	10.6	3,4		
t-0	1.6	1.6	1.7	1.6		
Corrected elevation	650.0	642.1	640.8	642.3		
· 	Reject		. 			
$\log p = 9 - 2 \log s$	· ·	Mean	Elcu	P-002		
p			6.41.7	malers.		
Weighted mean eleration of sta. obs.	31.		_2105	feet		
						11-5945
						1

					···	
Station 1, occ.	50 DAK 1953	5H+P 1943	OKING			
Station 2, obs.	P-003 Peak K	P-003 Peak B	Peak K			
Object sighted	Highest Point	Same	Sauce			
ξ1		87 46 55				
α and mean ϕ	243 52	159 54	121 52			
$\log (0.5-m)$		9.63246				
log s	- · · · · · · · · · · · · · · · · · ·	4.15514				<u> </u>
colog p		3,19537				
colog sin 1" J	1	5.31443		5.31443	5.31443	5.31443
log (k in secs.)	2.25 38		2.38349			
k in secs.	178	198	142		<u> </u>	
$(90^{\circ}-\zeta_1+k)$ in secs.	2 28 30	2 16 23	1 53 14	<u> </u>		
log ditto						
T log tan	8.63572	8.59872	8.51786			
log s	4.10977	4.15514	4.24191			
$\log \left[s \tan \left(90^{\circ} - t_1 + k \right) \right]$						
log A						
		- u _{er}				
log C						
$\frac{\log (h_2 - h_1)}{}$	2.74549	2.75386	2.75977	· • • • • • • • • • • • • • • • • • • •		
<u>h_2-h_1</u>	556.5	567.4	575.1			
$\left. \begin{array}{c} h_i \end{array} \right\}$	21.2	10.6	3,4			
t-o]	1.6	1.7	1.6			
Corrected elevation	579.3	579.7	580.1			
log p=9-2 log s	Mean E	levation	P-003			
p		579.7				
Weighted mean eleration of sta. obs.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1902	_	· · · · · · · · · · · · · · · · · · ·		
<u> </u>						11-5945
		<u></u>		 _		

			-			
	SUDAK					
Station 1, occ.	1953		<u> </u>			<u> </u>
	ļ <u>.</u>					
Station 2, obs.	5 PAR P-004				ļ	
,	P-004					
	-					
Object sighted	Top.					
ζ ₁	89 38 32					
α and mean φ	236 1 52					
	012011	<u> </u>	{		<u> </u>	
$\log (0.5-m)$	9.63246					
log s	4.142274					
colog p	3:19474					
colog sin 1"	5.31443	5.31443	5.31443	5.81443	5.31443	5.31443
log (k in secs.)	2, 28390					
k in secs.	19.1			j		
$(90^{\circ}-\xi_1+k)$ in secs.	0 24 40					·
/00						
log ditto						
T /og tam.	7.855 84			. 		<u></u>
log s	4.14227					
$\log [s \tan (90^{\circ} - \zeta_1 + k)]$						
log A			i			
- · · · · · · · · · · · · · · · · · · ·						
$\log B$						
log C		/		 		
$\log (h_2 - h_1)$	1.99811					
h_2-h_1	99.6					
h _t	21.2	y				
		7			·	
<u>t-o</u>	1.6					
Corrected elevation	122.4					
						
$\log p = 9 - 2 \log s$						
p	Elev.	P-004				
Weighted mean elevation of sta, obs.	122.4	meders				
пекупек шели останоп от вы, 003.	402	feet				er ee ee saar is
· · · · · · · · · · · · · · · · · · ·	<u> </u>	TEEL				11-5945

1004

		1				
04-43 7	BOTROF			!	į	
Station 1, occ.	(U 5N) 1943	11 A 11]			
Station 2, obs.	3080	Вово				
Object sighted	Top of rock	Top of rock	·			
				:		
						
<u></u>	100 00 50	loz Z6 33				
α and mean ϕ						
						1
$\log (0.5-m)$						
log 8						
colog p						
colog sin I"	E 97449	= 01449	F 0.1440	F 07440		
	5.31443	5.31443	5.31443	5.31443	5.31443	5.31443
log (k in secs.)			·		·	[
k in secs.		<i>/</i> j				
$(90^{\circ}-\zeta_1+k)$ in secs.	16 06 20	12 26 33				
log ditto }		/	,			
T log tan	9.46051	9.34369				
log s	2. 28446	2.25412				
		,				
$\frac{\log \left[s \tan \left(90^{\circ} - f_1 + k\right)\right]}{\left[s + \frac{1}{2} + \frac{1}$	1.74497	1.24781				
log A						
$\log B$			·			
log C	_					
$\log (h_2 - h_1)$	1.74497	1.59781				
	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 					
E 2 3		30/1				
$\left[\begin{array}{c} h_2-h_1 \\ \end{array}\right]$	-55.59	- 39.61	· · · · · · · · · · · · · · · · · · ·			
\[\frac{h_1}{\} \]	70.36	54.84	<u> </u>	•		
t-o	+ 1.26	+0.79		,		
Corrected elevation	16.03-	16.02				
, 						
$\log p=9-2\log s$						
p			· · · · · ·			:
Winds and described						
Weighted mean eleration of sta, obs.						
						11-5945

DEPARTMENT OF COMMERCE U. S. COAST AND GEODETIC SURVEY FORD 27 Ed. Antil 1909

POSITION COMPUTATION, THIRD-ORDER TRIANGULATION

ANGLE ANGLE ANGLE ANGLE ANGLE A(φ+φ') Sin τ σ, 3 σ 7 τ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ	Ed. April, 1929		0		:						٥	`	,,
to 1 to 2 to 3 to 3 to 4 to 1 for a 3 to 3 for a 3 to 3 for a 3 to 3 for a 4 for a 5 for a 4 for a		BB SUDBIK	70	٦	اء ا	/8/	. ຄ		to 2				
to 2 Purer Angue of Tainwin	ಳ	دند	30			7 20			39		 	<u> </u>	
to 2 Finest Angles of Theorems 180 000 000 000	+	0.1	14			8	3		to 1		<u> </u>	<u> </u> 	
to 2 Filter Angue of Thiangle 180 00 00.0				_[Ζα						 	
FHEET ANGLES OF TRIANGLES			180	00	0.00						I_{8I}	<u> </u>	╀
First Angle of Thirdian 177 27 06,712 \$\phi\$	t	20				σ,	Ħ		to 3		<u> </u>	<u> </u> 	1
26.15.3 2 808 a c P(USO), 1943	:	First Angle of Trial		*				1				-	
14 2 . 5 2 w . 14 2 . 5 2 w . 15 2 2 3 15 2 2 3 15 2 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 2 3 15 3 3 15 3 3 3 3 3 3 4 cm		C3	7. I.7		211.00	-6-	 		60		_	<u> </u>	:
Values in seconds Valu	06.031				215 .40	\$					2	-	<u> </u>
Values in seconds Val		B o B			03.227	è					<u> </u>	<u> </u> 	_
1 1 1 1 1 1 1 1 1 1		es in seconds	٥	,	ì		Logarithm	<u></u>	es in seconda		:	╢.	- :
Cosa Cosa	<u>,</u>		· (φ+φ,)		•	တ	,			φ)*	1,00		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\ \ 	1080	Logarit		Values in seconds	Cosa						rithms	Values
$Sin \frac{\tau}{\Delta} = \frac{q_1 \cdot 3 + 3 + 7 \cdot 03}{8 \cdot 5 \cdot 0} = \frac{h}{8 \cdot 15}$ $Sin \frac{\tau}{\Delta} = \frac{q_1 \cdot 3 + 7 \cdot 03}{8 \cdot 15} = \frac{h}{8 \cdot 15}$ $Sin \frac{\tau}{\Delta} = \frac{3 \cdot 15}{4 \cdot 0} = \frac{3 \cdot 15}{4 \cdot 0} = \frac{15t \text{ ferm}}{4}	<u> </u>		182.2	<u>,</u>		В				8			proces
Aλ	0 4 06 1st term		9,397	703	\	4		1st tern		Sina	ļ		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		V V	8.508			18				Α'			
+ Sin 4 (φ + φ · γ · γ · γ · γ · γ · γ · γ · γ · γ ·		Sed	0.209	4.	7	Sin a		-		6 90 M	<u> </u>		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		A	0040	ی	2.5/15/2	C				4			"
+ ((085,7)) 3d term +	2d term	• 1 -	+41)					2d term		Sin \$ (0+0			
+ ((085.7)) B 3d term		▼	æ	{		p3				- Δα	<u> </u>		
+ 3d term			7	7		Q							
	3d term			- (c		<u></u>		3d term	l				
	-04		3					 - -					

FOURTHORNER

Project Ph-34
T-9924

DEPARTMENT OF COMMERCE U. S. COAST AND GEODETIC SURVEY FORM 27 Bd. April, 1029

POSITION COMPUTATION, THIRD-ORDER TRIANGULATION

48.949 -60211542 ₹ SI 1.40 501715 -473,8 7 Values in seconds 0.00 75 o : - 25 60 6 Š 4 7 00 2779708 68,5 2 69.1 51-53 2468166 4188058 10.209932 9172717 Sing (4+4) 9.89 5881 Logarithms 0 0 0 73.6 177 90 77 I804 × \$(+\psi) 4 ^ Sin a Sec 4, - Δα 300 AK, 1933 Ą ¢, SPAR 1st term - 2 50.5 088 +0.4267 Values in seconds 0 5 30,242th to I to 33 19.861 3 2 સ્ટ 2d term 10.381 .. 399343 9.63015 4.142216 Cosa 9,747 184 8,509943 83749 18443 10823 Ç Logarithms 4.198 C ij + 07 co O, Singe 3 d Z Δφ 8 Ö 'n δ д Ø 7.83118-677.8264 8468492 ナしてつる 17.826 Values in seconds -532,9 0.00 ዏ 7 و. 100 4 4 ቷ ا ا ا 4 7 3 Ø 00 ø トナ ₹. 256602:0 2720457 8.508814 4 Sin \$ (0+0') 9.895 539 9-127218 4,384 994 Logarithms 73 7.01 2 5 7 981 S ر در ه + 180 \$(\phi + \phi_{\c)} র্ব ҳ FIRST ANGLE OF TRIANGLE Sina ;# 33g $-\Delta \alpha$ 4 26,874 2 NUB, 194 OSPAR 2d term +0, 385 1st term ~ (63,9200 Values in seconds (41917) \$ 3 to 🖈 to 2 30.241 봥 03.371 2.822116 4,384994 Ø 111126.6 8.76999 8.509 951 ナナ Logarithms L ニナンナニ ナコロニ 449.5 73-5 5 o CJ $\mathrm{Sin}^2\alpha$ Cosa 9 7 p Z \$ δά A 23 Ç ř. 8 상 0

FOURTH-ORDER

Project Ph-34

-250.3806

φ∇-

3d term + 6.0015

7.1790

9353

+0.0 106

φ∇--

3d term

027,0

. کۍ

2.386

А

7-88-H

1-0RDER

DEPARTMENT OF COMMERCE
U. 8. COAST AND SECOND STRVEY
Ed. April, 1929

POSITION COMPUTATION, THIRD-ORDER TRIANGULATION

	Ed. April, 1829			٥									"	
8	63	to 3		155	40	34	8	3	to 2			335 00	<u>ک</u>	
7 06		St.	••	+ 4	7 7	17	7 P8		ಳ		1	5 78	3 0 7	
ð	ঝ	to 1		159	46	15	೪	3	to 1		7	1007	478	
Δα				1	~	20	γα					+	<u> </u>	
				180	00	0.00						180 00	0.00	
'δ	1	to 23		339	43	49	β΄	1	to 33			<u> </u>	1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	0	FIRST ANGLE OF TRIANGLE	TRIANGLE	90	74	4.0		0	:			-		
•	Ch 15	12.850 2 SHIP. 1943	۲ 2 ×	7.61	77	17,285	•	51 53	36.153 BB	3 B. B. K. F(USU), 19K3	~	17727	2/2/00	
Δφ	7 +	28.900	44	+	W	51,543	Φ	+	11.599		<u> </u>		98815	
`⊕	5/ 53	41752 10COP(WW)		, 177	2	08.828	_/φ′	51 53	41,752 1	O CO P (200)	>	177 26	18.80	
	Logarithms	Values in seconds		0	1			Logarithms	Values in seconds	conds			:	
6	4,107586	1,000	\$ (p+p,)	15/-	50-7	28	80	3,023 252	- 1.		\$ (4+4°)	51-53	- 36	
Cos	COSa 9,972378			Logarithms		Values in seconds	Cos a	Cosa 9.53 1335	\ <u>.</u>			Logarithms	Values in	
æ	87660518		8	4,1075	اه	-	В	8.529940		ა 		3.023252	Springe	
.==	2.585912	2.58991 2 1st term - 388,9663	Sina	9,538589	00 0-	 -	ů	1.064527	1st term	11.6020 Sina	<u> </u>	73343		
83	8.21517		A' 8	8.5088	\ <u>`</u> \]		£8	6.04650		Y	A' 8,5	8,508815		
Sing	Sinsa 6.077! &		Sec φ′ 0	0.209641	7,7		Sin2 a	Sin2 0 946 68		Sec 4'		173 605.0		
Ö	11,50743		44	7.3646		4231,5427	C	08.805.1		. Δ		1.715051	-51.886	
ļ	8.79978	2d term +0.0631	Sin \$ (0+0) 9.895 588	1.8955	~ %			7.50198	2d term	+0,0032 Single+079,895899	5+00) 3,8	95899		
h			-Δα 1	10911	19	1,281+	p.			Δα	1.	610950	8.07	
P	2,3807			8.891			Д	2,3803		 				
	7,5605	3d term + 0,00 36		(078.5	$\widehat{\Gamma}_{\alpha}$				3d term +	\				
	-	-24 -38.8996	_						1	- 11. 5988				

TOURTH-ORDER

Project Pr-34

DEPARTMENT OF COMMERCE U. S. COAST AND REQUETIC SURVEY Ed. April, 1929

POSITION COMPUTATION, THIRD-ORDER TRIANGULATION

12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	-	יותי שלוווי אמלא	٥										*
101 161 27 26 32, 4 4 5 5 5 5 5 5 5 5	أر		 	200	7.5	8	8	to 2		γ.	— ナ	بما	77
102 103 104		¥	4	20	26	7,8		**		1	80		ı
to 9 180 000 00.0 0.0	20		191	77		8	80	to 1			12	6-	
180 00 00.0 The properties of Transolar 180 00 00.0 The properties of Transolar 180 00 00.0 The properties of Transolar 180 00 00.0 The properties of Transolar 180 00 00.0 The properties of Transolar 180 00.0 The pro	او					γα							[
First Angle of Triangle 4 4 4 4 4 4 4 4 4			180	00	0.00		, ,			18		<u> </u> 	0.00
First Anole of Telentale 84 14 04 04 04 04 04 04 04 04 04 04 04 04 04						۵ ٔ	1	to 33					
11 47 12.852 2 5 41 P 1943		"		٠. -	* :		,	"					:
φ γ	_	47 12,852	7 / V		17,285	Φ.				~	7	0	
	ė	7			16815	ΦΦ	2	10.482		ৰ	,	 	11.944
Logarithms Values in seconds \$\(\frac{1}{2}\) \\ \frac{1}{2}\) \\ \frac{1}\) \\ \frac{1}{2}\) \\ \frac{1}{2}\) \\ \frac{1}{	- <u>-</u>	54 20,347		26	09.156	φ,	54	1 P-00		<u> </u>	ļ	9	<u>~</u>
14 + 2.07 C 2 8 .8 4(4+4) Sint (12 2 S; 6)			0	" '			Logarithms	Values in seconds			•	=	
3 3 4		<u>. .</u>	ま(4十4)	-		30	4,129919		φ)#	(φ)			
509 948 63 0 999 12 8 6 4 4 12 8 5 0 9 9 4 3 13 8 1 1 2 9 9 9 4 3 13 8 1 2 9 9 9 4 3 13 8 1 2 9 9 9 4 3 13 8 1 2 9 9 9 4 3 13 8 1 2 9 9 9 4 3 13 8 1 2 9 9 9 4 3 13 8 1 2 9 9 9 4 3 13 8 1 2 9 9 9 9 4 13 8 1 2 9 8 1 4 13 8 1 2 9 8 1 4 13 8 1 2 9 8 1 4 13 8 1 2 9 8 1 4 13 8 1 2 9 8 1 4 13 8 1 2 9 8 1 4 13 8 1 2 9 8 1 4 13 8 1 2 9 8 1 4 13 8 1 2 9 8 1 4 13 8 1 2 9 8 1 4 13 8 1 2 9 8 1 4 14 1 8 0 4 15 8 1 8 1 8 1 8 15 8 1 8 1	18	4,976 844	Logarith		alues in seconds	Cosa	9.617			Log	arithms	Val	ues in
6.3 0 999 1st term -417,562 Sinfa 9,50 2 482 h 2,27 603 1st term -180,968 Sin a 9,959 2 8 14 2.8 8 4 4 A 8.50 8 8 14 Soc \$\phi'\$ Soc \$\phi'\$ 8.50 8 8 14 A 8.50 8 8 14 1,507 17 A 2,365 247 +23/,871 C 1,508 23 A 3.80 7497 A 1,807497 -64/,9 1,507 17 A 2,360 61 2,380 7 A 4.68 61 2,380 7 A 1,807497 -64/,9 2,380 7 A 1,75 1 D 2,380 7 A 1,500 1 A 1,690 1 1,642 7 3d term +0.00 1 A 1,001 A -0.00 1 A -0.00 1	8		į			В	5099		89	エニュ	1991		
2.8 8 4 4 4 4 4 4 4 8 5 cc φ' 0.2 0 9 7 4 4 8 5 cm² φ' 0.2 0 9 7 4 4 8 6 cm 40.0 b 3 cc φ' 0.2 0 9 7 4 4 8 c φ' 0 8 cc φ' 0.2 0 9 7 4 4 8 c φ' 0 8 cc φ' 0.2 0 9 7 4 4 8 c φ' 0 8 cc φ' 0.2 0 9 7 4 4 8 c φ' 0 8 cc φ' 0.2 0 9 7 4 4 8 c φ' 0 8 cc φ' 0.2 0 9 7 4 4 8 c φ' 0 8 cc φ' 0.2 0 9 7 4 4 8 c φ' 0 8 cc φ' 0.2 0 9 7 4 4 8 c φ' 0 8 cc φ' 0.2 0 9 7 4 4 8 c φ' 0 8 cc φ' 0.2 0 9 7 4 4 8 c φ' 0 8 cc φ' 0.2 0 9 7 4 4 8 cc φ' 0.2 0 9 7 4 4 8 cc φ' 0.2 0 9 7 4 4 9 cc φ' 0 9		99	9,502	487		ч	2,257603	1	Sina	9,9	7065	٦	
00 49 ½ Sccot 0.2 09 74 ψ Sin²a q. 9180 ψ Secot 0.2 09 74 ψ .8 0 0 5 ψ 2.3 6 5 ν ψ 7 + 23/.1371 C 1.5 0 8 2 3 Ax 2.8 0 7 ψ 97 - 6 ψ/.9 .8 0 0 5 ψ 2d term +0.0 6 3 Sin ½(0+φ) Ax 2.8 0 7 ψ 97 - 6 ψ/.9 2. 38 0 7 Az 3 8 0 γ Az 3 8 0 γ Az 3 8 0 γ 2. 38 0 7 Az 3 8 0 γ Az 3 8 0 γ Az 3 8 0 γ 3. 4 2 1 4 2 3 3 4 term +0.00 ψ 4 2 7 2 0 0 3. 4 2 1 4 3 3 4 term +0.00 ψ 4 2 3 8 0 γ 3. 4 2 1 4 3 5 6 7 4 4 5 6 7 6 0 0 1 3 4 term +0.00 1 - Δφ - 4 2 7 4 9 5 6 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		8,2854	8.508	718		£.	8 6 5		Α'	8.50	1881	+	
1,507 17 $\Delta \lambda$ λ , λ , δ δ δ ν μ λ , δ δ δ ν μ λ , δ δ δ δ δ δ δ δ δ δ	15	9.00 496	607.0	7+4		Sin ² a	∞		Sec 4'	9.4	カレ り	7	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	73	1,50717	2,365	747	23/.871	ဝ	٦		۷۷	1.81		I_{\perp}	1 1611
5.2624 -da -da h3 45152 2.3807 D 2.3804 D 2.3804 7.6427 3d term +0.004 (972.0) 6.8956 3d term +0.001	Î	2d term +0.0 6 3	in § (φ+φ')					+0.48			, - -	-	
2,3807 7,6427 3d term +0.00 4 -24 -427,495 (972.0) D 2,3804 6.8956 3d term +	9_	" (Da			h²	45152		-Δα				
3d term +0.00 th (972,0) 6.8956 3d term +	آم	2,3807	· ,	~ V		Д	2.380x				•		
- 47-		3d term		(0,7)	-		8.	+					
								1					

FOURTH-ORDER

Project Phish T-9928

DEPARTMENT OF COMMERCE U. S. COAST AND GEODETIC SURVEY FORTH 27 Ed. April, 1920

POSITION COMPUTATION, THIRD-ORDER TRIANGULATION

47.320 03.783 603.78 Values in seconds 5/10 0.00 77 0 z o 4 ω, 26 ٠ 0 9 7.780881 **`** 4 418805.8 426 POJ.0 4457566 4,109769 Logarithms Ā 1 3 にし Ē 180 6 53 7 ₹(+¢¢) ょ র্ব Sina Sec 4' 1953 A. ব bj SODAX. W 1st term -184,380 P-00 +0.429 Values in seconds to 23 to 1 to 33 60 2d term 뇽 1/0 19:80 04 15° 74 2.266186 大くたったのにも 大人大 8,509 943 4,109 769 8.219 54 1,50823 9.63285 Sin3 a 9 9 0 5 0 8 7 4.5324 Logarithms 7086.2 V h + 0 5 O œ 61 **7 P 8** δ ŝ ပ ā А `8 Δô ÷ ধ Φ. 2.431418 +270,034 47.319 30.034 17,285 Values in seconds 0.00 メメ 0 ę t ナイ 4 36 <u>۔</u> 00 7 ہ 4 رة د 9.406 426602.0 75135 N 9,557725 41880518 Logarithms ナナ Ø 7 ナニ 180 ****2 র্ব × \$ (++ p,) ~ $\operatorname{Sin}_{\frac{1}{2}}(\underline{\phi}+\phi')$ FIRST ANGLE OF TRIANGLE Sec 4' \sin^{α} Ą, SHIP, 1943 P-003 1st term + 431.252 9800+ Values in seconds (11 12.3) いったし to 2 Ç1 to 3 to 1 2d term <u>ک</u> % 162 410.42 زند نے Ξ 8.509948 87969616 93313 14.155135 2.63473 7,3807 ナン 5 Logarithms 4 LOSI 8.3102 ゴンー: 6 672.5 t را Ç4 ¢1 a,:::: Cosa 9 7 24 2 Ęq Φ æ 10 Ö Ž ď ŏ ď. •

FUURTH-ORDER

Project PL-34

-184.150

47−

0000

+

3d term

871

6.9

(かっちて)

-431,167

 $-\nabla \phi$

+00.00 4

3d term

649

ナルのカート

NAUTICAL CHARTS BRANCH

survey no. <u>79924</u>

Record of Application to Charts

DATE	CHART	CARTOGRAPHER	REMARKS
12/2/54	9145	JG Milam	Before Verification and Review
12/30/92	16467	Joseph Bobusu	Before After Verification and Review
			Before After Verification and Review
			Before After Verification and Review
			Before After Verification and Review
			Before After Verification and Review
<u> </u>			Before After Verification and Review
			Before After Verification and Review
			Before After Verification and Review
			Before After Verification and Review
		,	

M-2168-1

A basic hydrographic or topographic survey supersedes all information of like nature on the uncorrected chart. Give reasons for deviations, if any, from recommendations made under "Comparison with Charts" in the Review.

