I

The

Report on the Geology of Mt. Desert Island
(Topographic Sheet Nos. 1343 - v 1331 etc.
by J.M. Dunn. Assistant)

Report by
J. Enstoffer
Aug. 28 - 1874

A cigar box with specimens is with the bottom
Specimens-

Original

MAR 21 1891
ARCHIVES

This report was found with the specimens & filed by 5/14/90
C. R. Patterson
Superintendent of the U. S. Coast Survey

Sir,

According to agreement I started on the 3rd, and arrived on the 6th of this month at the place of my destination. At the first view which I gained over the grounds of the Island I found my supposition fully sustained, namely that the character of the configuration resembles that of an alpine nature on a diminutive scale.

The enclosed stereographs, sketchbook, stamps of rocks will fully corroborate the same, and will conclusively prove not only this reconnaissance, but establish the necessity of a thorough orographical representation.

In as much as the amount of work has been even more than that of ordinary employment I beg leave to say, that the so-called leave of absence may be transformed into a special duty, to examine certain questions on orographical conditions on the
Desert Island.

I further enclose an example copied from the Planetable 1243 for comparison and as a specimen of execution as would be desirable to be adopted in finishing field works.

My traveling expenses amounted to £115 which I beg to be reimbursed to me.

Very respectfully,

your obedient servant

J. Ethelber

Washington, August 28th, 1874.
Report of an geographical reconnaissance
of Mt. Desert Island.

In scaling the most prominent heights of the Island I have been unable to observe the geological structure, which I found of the following order. The base of the Island is of trap-rock. In such locations where this rock was less exposed to erosion it is metamorphosed granite; consequently we can judge that the foundation of the whole Island is of a basaltic nature. The trap-rock circles the whole Island in heights of from 20 to 120 feet, upon this layer rises gray granite to about 100 to 300 feet and on the top of this rests the red granite. The crystallization of both granites outcropping the surface is very coarse and unfit for building purposes. The action is in that latitude already most effective, producing in all precipitous localities slums (in Alpine language) on the Island called slides of a formidable size, and gradually filling up the small lakes.
The most interesting spectacle of the plain power of erosion can be observed at these points where the breakers find the great resistance. Here are found in abundance the so-called whirl-pool stones, formed and polished to the most perfect ellipse, but what was of real interest was the discovery of the same whirlpool stones on the summit of Green Mountain, the highest point of the Island (see specimens No. 5 & 6.)

These specimens prove conclusively the gradual rising of the Island out of the ocean and further the fact that the top part of this mountain had to undergo at a certain time the same works of erosion as the present shores. This state of affairs is further proved by numerous rivers shored around the summit, which can be transported further only at a time, when this locality formed a ledge, on which iron shoals deposited the stones.
For topographical purposes the investigation of the geological structure may be confined to the configuration of the surface only, but to that extent a general knowledge is indispensable. Without this information no comprehensive understanding of the causal nexus can be formed.

I refer now to the tracings of plane-tables No. 1934 a & b. The sketching in red ink indicates the rocky configuration in its principle outlines & sufficiently characteristic for the representation on a reduced scale of 1:20,000, but in order to show how this object shall be treated on the field-maps, I copied one of the most conspicuous mountain parts located on Sumtes sound. I further selected this subject because it is at the same time one of the best and minutest surveys of Mr. Dennis. A comparison of this example with the plane-table will however show at once, that the latter is lacking to represent any
distinct formation of the rocky construction on the more gentle slopes it only marks the principle precipitate on the other side only such which shall indicate a rocky nature. This indistinctness shows a want of artistic conception of forms. In referring to this deficiency, I do not mean to blame the individual engineer or draughtsman, but I do blame the authorities, which are destined to the office to construct Charts, Maps & plans in the best style and up to the standard of this branch of science and art. But shall this be achieved without any establishment for the proper instruction thereof? All European topographical Institutions are obliged to educate their engineers, Draughtsmen, engravers themselves as it cannot be expected that the schools bring the scholars up to such a grade and perfection as is required for the practical service of such Institutions.

I further have to allude to the representation of the configuration by equidistant curves only and without detail drawing of the
characteristic features of croosnphy. This system is unquestionably the best system as long as it has to deal with gentle undulating terrain, but as soon as we attain to the higher mountainous regions, the system is insufficient without the assistance of topographical drawing. This is strikingly exposed in the late plane tables 1834 a & b. and in the Harbor chart of San Francisco, where the perspective views of the entrance of the golden gate show that the declivities of the coast are composed of most formidable rocks, whereas the topographical representation of the same subject show no indications of such a characteristic.

I would not mention these discrepancies, if I did not know how to remedy the same, but what I have still more at heart, is to call the attention of the office towards preparatory steps for the
coming want of a perfect organisation to geographical corps, to the construction of which the U. S. Coast Survey is more or less than any other body.

In conclusion to the remarks on a more efficient system of topographical drawing upon the planchets I will also make some remarks on the representation of rocks.

The present literature and illustrations on topographical matters, have to the time failed to establish a systematic rule for this object. When engaged in the publication of my Topographical Atlas I had commenced to collect maps and facts to that purpose, but finding the task rather difficult and too expensive for my purse, I laid the same aside, awaiting an opportunity for the completion thereof. This opportunity may be found now, provided the office orders to
lay down a system for the illustration of rocks. In order to treat upon this subject with perfect understanding, it becomes a necessity first to classify the rocks in regard to their principle formations.

Topographical illustrations are in particular such on small scales will never allow to represent at the same time also the mineralogical classification. All that the topographical engineer can achieve in this question, is conducted in a characteristic design for the contouring and system of hachuring indicating the declivity. In as much as the rocks will never be subject to a minute survey, therefore the illustration depends the more upon an artistical comprehension. The classification of the different types will embrace the following characteristic representations.
1. The Wall, Pinnacle or Cliff - Form
2. Ridge
3. Terrace
4. Ripples
5. Boulders (Steinholde)
6. Murrin
7. Moraines
8. (Schmand)
9. Ledge
10. Lava.

I propose hereewith to collect such examples as will be necessary to the illustration of the above enumerative types, and when completed lay them before the office for conideration and acceptance.
Practical results of the reconnaissance on Mt. Desert Island.

First. Of the most important result of the reconnoitering are to be considered the sketches on the backs of the plane-tables 1394 a and b and the corrections on the proof-sheets, by the aid of it I will be enabled to complete those parts of the topography which have been left indistinct on the copy of said plane-tables. I must however state that I could not explore the whole area of the Island in as much as I found in many cases the obstructions so formidable that the same could not be surmounted without the assistance of a guide and proper equipments always necessary to scale such a terrain as is to be found in this sections of the U.S. Coast.

Secondly. By the results of this reconnaissance it is clearly established that the character of such a rocky configuration cannot find any satisfactory representation by horizontal curves only, but
that the surveyor must in such matters be converse with the system of topographical draughting, or these characteristics have to be added by such a person who is perfectly familiar with the art of draughting and the natural conditions of such a terrain.

By the omission of this important and highly characteristic detail it is proved that examples and instructions have to be established as rules for the field-engineers as well as for the draughtsmen and engravers.

In conclusion I offer my services as well to the necessary reenquiries as to the preparations of those formulars, essential to the latter point.

Respectfully,

your

Subsequent servant

S. Cathoffe