U. S. COAST AND GEODETIC SURVEY.

A. R. Wilson, Superintendent.

State: Maine.

DESCRIPTIVE REPORT.

Topographic Sheet No. 1835.

LOCALITY:
South shore of
Cobscook Bay.

1887.

CHIEF OF PARTY:
Eugene Elliscott.

APR 17 1883
ARCHIVES
U. S. Coast and Geodetic Survey,

Mr. Henry A. Warner, Esq.
Director U. S. Coast and Geodetic Survey
Washington, D.C.

Dec. 5, 1886.

Sir:

I have the honor to submit the following report to accompany topographical sheet No. 1305.

Work was begun on sheet May 12 and closed Nov. 14, 1886.

The results of the geological section of the county council lay to the topographical sheet in the metamorphic rocks. Evidence of action producing this character of rock is seen frequently in outcrops and walls of slate (of no commercial value owing to amount of sandstone or limy) and vitreous sandstone.

In many places evidence of glacial action can be seen. The streams being generally North to South, though variations from this line are noticeable, as in other localities where the action has been observed.

The percentage of surface covered by rock, or rocks, compared to alluvial is remarkably high.
II. The shores of that part of Cooselate Bay curved by my survey are rarely sandy, for they are not particularly built, though generally washed round. There is no sand and but little gravel. Low water line is generally measured with some accuracy as high water. Any object was too for the low water mark at high water. It can be easily understood how difficult, indeed impossible, to the determination of low water line would be.

At all events, I have conceived the idea that one can easily understand the correct determination of low water line is only second in point of importance and value to high water line.

III. Question of stranded ships at Cooselate Bay is not worthy of discussion.

IV. The straight on beach is of every possible size. Generally, they are of local origin, though many of granite, basalts, porphyries, etc., from the southward are to be seen.

V. Any report made on part of subject under this head should be by a geologist, or else studied closely by a man who does not profess
to bring well suited to geological study. One or two of the concluding questions can be safely applied to Harcourt. The fresh and salt water generally the latter manner, are very limited in extent, and are covered at high tide.

Character of vegetation. The trees are of great growth. All of the timber fit for the mill has either been removed or destroyed by fire. The present or second growth is used for fuel, and quite a lot is shipped to the lake at Cardinham, N.Y. The last mentioned is known by the people of this section as "long wood," being any wood, whether in the forest or in piles, north cutting, is domesticated as above.

Spence is the prominent tree of that part of Maine covered by my topographical sketch. It is mixed with the spruce in this, birch-red, gray and white, and a scattering of maples.

<table>
<thead>
<tr>
<th>Land Type</th>
<th>Proportion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Woodland</td>
<td>55.5%</td>
</tr>
<tr>
<td>Fens</td>
<td>5%</td>
</tr>
<tr>
<td>Shallop</td>
<td>6%</td>
</tr>
<tr>
<td>Heath</td>
<td>3%</td>
</tr>
</tbody>
</table>

The proportions of arable land are 0.5%.
IX cm. Along the Mechanics-Latrobe stage road, beginning at about western extremity of said road and running thence easterly for a distance of two and a half (2 1/2) miles a straggling settlement known by the P.O. Dept. as Latrobe. The original name for this settlement was Earth Run. The proximity of an arm of Lakeview Run locally known as Earth Run is manifestly the cause of old name for the village. The settlers exercised a disposition to adopt the P.O. Dept. designation, and I have no doubt but that the name will become popular. The settlement of West Latrobe began in about 1812. The town of Latrobe (named for German city of Latrobe) was, and still is, the market for this section, is distinct about five miles.

West Latrobe was originally agricultural. Wheat, Barley, and oats, having been profitably cultivated. The culture of the two first mentioned grains has entirely ceased, corn, potatoes, and coarse tobacco from the West being the cause. The people have made, for markets, a fine potato. The remainder of their land is a mere "some lot"
...an influence which hangs for domestic use is wanted, wood chopped, and pasturage for a fair share afforded. The major part of income is derived from employment afforded by "sardine factories and wharves at Suisun and Eastport. I am informed that from about 1830 to 1855 there was a profitable business done by the shippers in shipment of concentrated hay, potatoes, etc., to Portland and Eastport. It may be of place to speculate on a report of this sort, but it is safe to say that the uncertain and destitute employment afforded by the fish business "sardines" and herring, etc., developed within thirty years, has gotten the people into a state of stringency which forbids the hope that they will ever be as well off as their agricultural predecessors were.

The small bit of county reports which I am now reporting were four or six "tile saw-mills." There is "stay mills run by tidal water, two or three carding mills, a plaster mill, brick yard, and cotton bleaching mill. In a word, little means of making the people independent of the outside world. The saw-mills..."
Flour naturally disappeared with the timber.
The other industries have been absorbed, in
common with those of all other clumsy bulk
carrying by the great factories to the hinterland.
Transportation over my oft referred to telegraphic
rail system is almost exclusively by three and
wagon. The main stage road is in good
condition—indeed remarkably good. The log-roads
are generally good. Trails are not bad, and but
few of them. Bridges are not especially well
built, though good enough for the traffic.
Tunnels are generally of wood.

The "Negro land"
of this section is operating to various gold-lure
along road sides. This will soon only be left position
exclusive. There are no health or pleasure resorts
on the streets. In the strip of territory covered by the
street there are probably five hundred people.
In general terms it can be said that the section
in question is not very prosperous—indeed
there is an air of decay to be seen in all
directions.

Ten or fifteen years ago, during what
is now known as the "mining excitement," quite
a lot of prospecting was done on the sheet under discussion. Mr Tuthill and Newton exploration
involved literally, and at this point showed,
mineral. There are veins of silver and lead
ore, easily traced. Thought to exist—in one instance
at least—five feet were mine, but the failure
to strike paying ore caused a general collapse.
Informant mineralogist declared that there is
no probability of paying ore being found.
A very remarkable feature in physical
geography is to be seen at the Escondido Falls.
The annexed sketch, traced from the topographical
sheet shows the locality.

In accordance with your instructions
I measured the falls during one flood and
one abt (near) tide. I neglect that dark lines
prevent the completion of observations of the
first mentioned tide.

Maximum fall, flood 3 ft. 2.593

abt 2.144

Measurements were made along the red line
drawn, generally parallel, on rocky surface
(streaked at high water) at station N W end of
Falls island. The distances between measurements averaged forty meters. Therefore, the fall on these reefs tides, as previously said, occurred in a distance of forty meters. I am quite sure that during heavy spring tides the fall is much more pronounced. The mile-reef created when the ebb, marked by measurements is that the current is very much in excess of obtained results. I have heard the noise caused by the rushing waves two miles away.

Appended to this report is a copy of local observations, I do not regard them as of any special value. I would recommend that during some future season more elaborate measurements be made, and that a line of levels be run from head of the West Branch (Winding) of Colebrook Bay to Gay coast Harbor, on the outside coast; difference in times of tides being noted, etc.

I need hardly say, that the broader passage lying between Falls island to the Sandbar and Eastwood, and the mainland is generally used for the vessels going to and from Winding and Danversville, though, when the
wind is of sufficient strength, and in favorable
gusts, vessels are apt to slip through the
gulls. Their are several rocks and ledges in
the roadway which cause seamen no small
and easy “swirls” of current when vessels attempt
vessel passage without fair current.
The fortress immediately behind (N.E.) the
gulls is possessed of weird charm and
security, and I cannot but think that it will
become a resort for summer travelers.
In concluding this subject I can but express
my regret at the inadequate results obtained
by the observations taken.

Schedule of statistical subjects.

I. General facts

The weather was unusually unfavorable. During
early part of season there was a long rain
fall, and with approach of summer — say July,
the gales became frequent.
Report of working days does not convey an
exact idea of weather, as I frequently spent a
day on the working grounds to get out one
or two hours of work. I feel quite safe in pronouncing the working season of 1867, in
Court of Maine, as the least favorable of past six years.

I have, after very careful consideration, concluded to estimate five miles of shore line
as equivalent to one square mile of country. Generally it will mean more than five miles
of shore line, but in the direct under discussion, the low water line is pronounced, and was in
most cases measured quite as carefully as the
high water. Indeed the low water line, throughout
the whole described more than any other
part of the work. Thus you, the estimate as
above mentioned is not at all excessive.

Cost of work, per square mile
$64.27

After settlement of traveling expenses
(during season)
of my journey from this place to Washington.
The above cost per square mile may be very slightly
limited. I regard the cost of this piece of work,
and feel quite sure that it materially exceeds
any of my previous expenditures, per square
mile, per work on this coast. See over.
Statistics of work done
and cost.

Square Miles of Lopez: — — — 23
bread Lin 75 m: — — — 16
allow for 23 m of Roads: — — 2

Party Expenses May 1-5 Rev. 14-15 Rev. $2590.87
Salary May 1-15 Rev. 14 — — 812.50
Office work during shut: — — 512.50
and when shut terms in fancy
abate 2 days worth 20

Total cost $3916.37
+$7965.37 ($777.37 per
365
= 216
= 350
320
= 320

Mr. Ecclestone 64.27
R.H. Colonna
Arch. Chp. Office
4-12-81
Chief Drawing Division,

Please have measured the
tent created by Arch Ellington of C.C.B.
in 1887 as follows:

1st. The Shore Line in Miles? 75
2nd. The Roads in Miles? 28
3rd. The Area in Sqr. Miles? 23

How from Mr. Ellington estimate how long
time it would take him to ink
this Shut?

How Mr. McClench estimate how long
a time it would take him to ink
this Shut?

Take a competent engineer
weeks 5 How long do you think it ought to take to ink the Shut?

days. 6 How long ought it to take to complete
it?

Yours respectfully

O. A. Colonna
Act. Chief Opt.!
Maine
1 Frigate Party -- Boyd -- 1000.00
1 Top司 Party -- Elliott -- 1000.00

Nantucket
1 Top司 -- -- Van Dusen -- 700
1 Top司 -- -- Fantella -- 700

Monomoy -- -- Mainau -- 877

Riponia Dungen -- 400

Eliette
from May 1st
$750.00
Payment to the 30th 1887 on P.J. Sheu of Cohasset Bay (accid).
(Receipt No. 14)
Dec. 31 1887
$1840.37
8 1/2.50

Salmon from May 1st to Nov. 14
$2590.37
6 1/2.50

n from Nov. 15 to Mar. 31
Office Form

Total
$3916.09

Field work received in sq. m. = 28
in Shemkin = 752 = 15
in Ross = 232 = 2

$40 / $60 = $3/5
3/5
$22.2
The work was done on our ten-thousand scale. No trouble or inconvenience was experienced by
condition of triangulation.
It would be well make impossible to report on
the number of plane table points. I will merely
say that in running plane table along the shores
the stations were made with great frequency.
Every bit of shore has been actually measured to,
in order to do which a great many positions
had to be occupied. I long since adapted the
habit of having stations close to one another
in order to secure greater accuracy and to make
the work less laborious. In running a road
where improvements are adjacent (like the
Machines - like stage road) to one another,
I think it safe to say the average distance of
stations, one from another, does not exceed one
hundred and twenty five meters.
When signals were to be seen I used the three
point problem — in other cases the forward
one.

In detail of work is done with precision.
Of course the shortest is most accurate.
I can trace the roads as men with care, hones located by intersection, or distance used. The only part of the work which is at all more or uncertain is that of contours through wood lands. It would be impossible to secure absolute precision in delineation of the surface. The cost of work - if accuracy of contours was required - would run into the hundreds of dollars per square mile and when secured would be valuable to every human being on earth. My system is to occupy every hilly top while it is of any prominence, determine the height, set in contours as well as needs be, and afterward to determine the water courses, the divide, etc., and then sketch the contours. This applies to the wood lands.

It would be well to add that while on the hill tops I send the roadmen for distances here and there, so and so in sketching. Not infrequently, the rod is held in this tops height above ground estimated by the roadmen, and correction applied by me. I am conscious of having done a little rough sketching, but generally
The sketch work is extremely good. According to my judgment there has been a great deal of time and money thrown away in attempting to secure this unattainable in plain table work.

There are no objects on my sketch of sufficient prominence to justify special designation. Every house and barn is well enough located for the topographer or hydrographer to get perfect form. There are certain gifted geographical names on this sheet, and others within, local. As an instance of the latter, one little creek is known by a man named Messner, at Messner's creek. Messner lived there long. In the same vicinity lies one Forrest, who has honored geographical by retaining on said creek his name. Mr. Anderson, another like his neighbors, and gives the creek his name. People living a mile or two away will have different names for same place. I think a prospect on such a state of affairs would be intensely uninteresting, and of not the smallest value.
I will make at future time certain reconnaissances and explorations concerning prospecting work in the neighborhood of Lake.

In conclusion I beg to say that it is an extremely difficult task to make a satisfactory report on a fragment of country bounded by the two sides and two ends of a topographical sheet. The limits of such a place are placed without any other reference than to overlap another sheet. I would most respectfully suggest that a certain section of coast, beginning, for instance, at Mahone Bay, and extending to (and including) Lunec, be made the subject of a report. Special features can be referred to certain (numbered) sheets for full description, etc.

I venture to suggest further that no compilation made from reports of unscientifically traversed sections of country will have as much value as the sort of report which I propose.

Very respectfully,

[Signature]

Eugene Allien
Sketch, showing progress of work, short line in neighborhood of Cadesvall Falls, table showing result of civil work at Cadesvall Falls, and report of progress are enclosed herewith.

Eugene Allen
Measurement of tidal falls, Cadboro Bay, &c.

The falls here noticed at time work was done. Level rod was kept generally on levels 72 1/2 distant apart, about 40 metres.

<table>
<thead>
<tr>
<th>AM</th>
<th>Floor Rise</th>
<th>Floor Fall</th>
<th>Fall</th>
<th>AM</th>
<th>Floor Rise</th>
<th>Floor Fall</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>5.604</td>
<td>7.598</td>
<td>1.994</td>
<td>7</td>
<td>9.233</td>
<td>8.624</td>
<td>FALL</td>
</tr>
<tr>
<td>10</td>
<td>4.140</td>
<td>5.864</td>
<td>1.720</td>
<td>7</td>
<td>7</td>
<td>Tide Levels</td>
<td>FALL</td>
</tr>
<tr>
<td>11</td>
<td>6.350</td>
<td>8.080</td>
<td>1.730</td>
<td>7</td>
<td>5.333</td>
<td>Floor levels</td>
<td>FALL</td>
</tr>
<tr>
<td>11</td>
<td>6.740</td>
<td>8.000</td>
<td>1.260</td>
<td>8</td>
<td>8.355</td>
<td>7.655</td>
<td>700</td>
</tr>
<tr>
<td>11</td>
<td>6.165</td>
<td>7.185</td>
<td>1.023</td>
<td>8</td>
<td>7.344</td>
<td>7.193</td>
<td>851</td>
</tr>
<tr>
<td>12</td>
<td>5.960</td>
<td>6.520</td>
<td>0.560</td>
<td>8</td>
<td>9.175</td>
<td>6.215</td>
<td>924</td>
</tr>
<tr>
<td>12</td>
<td>5.970</td>
<td>6.090</td>
<td>0.120</td>
<td>9</td>
<td>6.090</td>
<td>5.650</td>
<td>1.040</td>
</tr>
<tr>
<td>12</td>
<td>5.000</td>
<td></td>
<td></td>
<td>9</td>
<td>12.870</td>
<td>11.505</td>
<td>1.365</td>
</tr>
<tr>
<td>12</td>
<td>5.000</td>
<td></td>
<td></td>
<td>9</td>
<td>11.673</td>
<td>10.436</td>
<td>1.437</td>
</tr>
<tr>
<td>12</td>
<td>5.000</td>
<td></td>
<td></td>
<td>10</td>
<td>11.035</td>
<td>9.182</td>
<td>1.853</td>
</tr>
<tr>
<td>12</td>
<td>5.000</td>
<td></td>
<td></td>
<td>10</td>
<td>9.744</td>
<td>7.600</td>
<td>2.144</td>
</tr>
<tr>
<td>12</td>
<td>5.000</td>
<td></td>
<td></td>
<td>10</td>
<td>8.320</td>
<td>6.500</td>
<td>2.040</td>
</tr>
<tr>
<td>12</td>
<td>5.000</td>
<td></td>
<td></td>
<td>11</td>
<td>10.092</td>
<td>7.904</td>
<td>2.088</td>
</tr>
<tr>
<td>12</td>
<td>5.000</td>
<td></td>
<td></td>
<td>11</td>
<td>8.000</td>
<td>6.700</td>
<td>3.300</td>
</tr>
<tr>
<td>12</td>
<td>5.000</td>
<td></td>
<td></td>
<td>11</td>
<td>7.520</td>
<td>5.500</td>
<td>2.020</td>
</tr>
<tr>
<td>12</td>
<td>5.000</td>
<td></td>
<td></td>
<td>12</td>
<td>8.965</td>
<td>7.201</td>
<td>1.764</td>
</tr>
<tr>
<td>12</td>
<td>5.000</td>
<td></td>
<td></td>
<td>12</td>
<td>7.902</td>
<td>6.365</td>
<td>1.537</td>
</tr>
<tr>
<td>12</td>
<td>5.000</td>
<td></td>
<td></td>
<td>12</td>
<td>7.006</td>
<td>5.760</td>
<td>1.285</td>
</tr>
<tr>
<td>12</td>
<td>5.000</td>
<td></td>
<td></td>
<td>12</td>
<td>7.006</td>
<td>5.760</td>
<td>1.285</td>
</tr>
<tr>
<td>12</td>
<td>5.000</td>
<td></td>
<td></td>
<td>12</td>
<td>10.606</td>
<td>5.460</td>
<td>0.570</td>
</tr>
<tr>
<td>12</td>
<td>5.000</td>
<td></td>
<td></td>
<td>12</td>
<td>12.000</td>
<td>7.600</td>
<td>0.350</td>
</tr>
<tr>
<td>12</td>
<td>5.000</td>
<td></td>
<td></td>
<td>12</td>
<td>10.000</td>
<td>1.200</td>
<td>0.150</td>
</tr>
</tbody>
</table>

The dash for further obs.

L. S. L. E. No. 9
Scanned and sketched.
1867

Court & Levee Survey

Sketch showing location of Cobscok Falls (title)
Cobscok Bay, etc.

Surveyed by, and to accompany description of tract

Traced from

Scale 1/10,000

Mainland Lebec Side

[Signature]

40-51

[Signature]