DESCRIPTIVE REPORT

<table>
<thead>
<tr>
<th>Type of Survey</th>
<th>Chart Topography</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field No.</td>
<td>Office No.</td>
</tr>
<tr>
<td>State</td>
<td>Oregon-Washington</td>
</tr>
<tr>
<td>General locality</td>
<td>Columbia River</td>
</tr>
<tr>
<td>Locality</td>
<td>Umatilla</td>
</tr>
</tbody>
</table>

CHIEF OF PARTY
V. Ralph Sobieralski, Chief Photogrammetry Division

DATE
PROJECT NO. (III):
PH-6718

FIELD OFFICE (III):
CHIEF OF PARTY

PHOTOGRAAMETRIC OFFICE (III):
OFFICER-IN-CHARGE

Washington Science Center
V. Ralph Sobieralski

INSTRUCTIONS DATED (III) (III):
Field - July 12, 1967
Field, Supplement I - December 26, 1967
New Chart Topography - September 19, 1967
Nautical Chart Requirements - March 6, 1968
Aerotriangulation - March 20, 1968
Office - April 15, 1968

METHOD OF COMPILATION (III):
B-8 stereoplotter

MANUSCRIPT SCALE (III): 1:20,000
STEREOSCOPIC PLOTTING INSTRUMENT SCALE (III):
1:10,000

DATE RECEIVED IN WASHINGTON OFFICE (IV):

DATE REPORTED TO NAUTICAL CHART BRANCH (IV):

APPLIED TO CHART NO.:

DATE: DATE REGISTERED (IV):

GEORGRAPHIC DATUM (III):
N. A. 1927

VERTICAL DATUM (III):
MEAN SEA LEVEL ELEVATIONS AS FOLLOWS:
Elevations shown as (ft) refer to mean high water
Elevations shown as (f) refer to sounding datum
i.e. mean low water or mean lower low water

REFERENCE STATION (III):

LAT.: LONG.: ADJUSTED UNADJUSTED

PLANE COORDINATES (IV):
X =

STATE ZONE

ROMAN NUMERALS INDICATE WHETHER THE ITEM IS TO BE ENTERED BY (II) FIELD PARTY, (III) PHOTOGRAAMETRIC OFFICE,
OR (IV) WASHINGTON OFFICE.
WHEN ENTERING NAMES OF PERSONNEL ON THIS RECORD GIVE THE SURNAME AND INITIALS, NOT INITIALS ONLY.
FIELD INSPECTION BY (III):

Robert B. Melby

DATE: Jan.-March 1968

MEAN HIGH WATER LOCATION (III) (STATE DATE AND METHOD OF LOCATION):

Normal pool level, 265 ft. MSL, located by office interpretation from color photography dated November 1967 and June 1968 and infrared dated June 1968.

<table>
<thead>
<tr>
<th>PROJECTION AND GRIDS RULED BY (IV):</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>R. Lillis</td>
<td>March 1968</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PROJECTION AND GRIDS CHECKED BY (IV):</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONTROL PLOTTED BY (III):</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>H. Lucas</td>
<td>September 1968</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONTROL CHECKED BY (III):</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R. Youngblood</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>September 1968</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RADIAL PLOT OR STEREOSCOPIC CONTROL EXTENSION BY (III):</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. I. Saperstein</td>
<td>April-May 1968</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STEREOSCOPIC INSTRUMENT COMPILATION (III):</th>
<th>PLANIMETRY</th>
<th>CONTOURS</th>
</tr>
</thead>
<tbody>
<tr>
<td>J. Richter</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DATE</td>
<td>DATE</td>
</tr>
<tr>
<td></td>
<td>October 1968</td>
<td>October 1968</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MANUSCRIPT Delineated BY (III):</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. Webber</td>
<td>October 1968</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SCRIBING BY (III):</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PHOTOGRAMMETRIC OFFICE REVIEW BY (III):</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REMARKS:

F. EDIT - SEPT. 1969
CAMERA (KIND OR SOURCE) (III):
- RC-8 (Corps of Engineers "Y" camera)
- RC-8 "E"

PHOTOGRAPHS (III)

<table>
<thead>
<tr>
<th>NUMBER</th>
<th>DATE</th>
<th>TIME</th>
<th>SCALE</th>
<th>STAGE OF TIDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>68-E(C)-6455-6467</td>
<td>6/16/68</td>
<td>11:59-12:03</td>
<td>1:20,000</td>
<td></td>
</tr>
</tbody>
</table>

TIDE (III)

<table>
<thead>
<tr>
<th>REFERENCE STATION:</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SUBORDINATE STATION:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WASHINGTON OFFICE REVIEW BY (IV): J. P. BATTLEY

PROOF EDIT BY (IV):

NUMBER OF TRIANGULATION STATIONS SEARCHED FOR (III):
- RECOVERED: 4
- IDENTIFIED: 4

NUMBER OF BM(5) SEARCHED FOR (III):
- RECOVERED: 7
- IDENTIFIED: 7

NUMBER OF RECOVERABLE PHOTO STATIONS ESTABLISHED (III):
- 7

NUMBER OF TEMPORARY PHOTO HYDRO STATIONS ESTABLISHED (III):

REMARKS:
Summary to Accompany Descriptive Report T-13217

T-13217 is one of seven 1:20,000 scale chart topography maps covering Lake Umatilla (John Day Pool) a part of the Columbia River. John Day Pool was formed by impounding the water behind John Day Dam east to McNary Dam. The seven maps will provide the base for two small craft charts (673 SC and 674 SC).

Field operations began in late 1967 with the paneling of selected triangulation stations just prior to acquiring aerial photography. Field inspection continued and encompassed the determination of elevations of selected bench marks, shoreline inspection and the photoidentification of features that could possibly have a critical elevation for charting when the pool is formed.

Twelve strips were bridged by the analytical method, two strips at 1:60,000 scale and ten at 1:20,000 scale. Excellent horizontal and vertical accuracy was obtained from the pre-marked control and field determined elevations.

Photo-compilation was accomplished in the Washington office, utilizing the 1:20,000 scale color photography taken November 2, 1967, prior to the flooding of the John Day Pool. The Columbia River ranged in elevation, on this photography, from approximately 165 feet above MSL to 235 feet at McNary Dam. The shoreline to be shown on the charts is the "normal pool level" of 265 feet. Contours and spot elevations were compiled on the B-8 stereoplotter at selected intervals between the river level and the 265 foot shoreline contour. These will be used as depth curves and soundings on the published chart. All required chart compilation features were compiled at this same time. The original instructions called for the photogrammetric compilation at chart scale (1:20,000) but upon initiating the B-8 compilation, it was apparent that for clarity the contours would have to be compiled at 1:10,000 scale. This scale allows the Marine Chart compiler and the field editor to clearly interpret the contours and other compiled features and evaluate what will be shown on the finished chart. Discussion with the Marine Chart Division resulted in the decision to supply them with 1:10,000 scale inked "Manuscript work bases" for interpolation. Field edit was applied to these bases (approx. two bases for each T-sheet). These bases were reduced to one-half size and paneled to the 1:20,000 scale manuscripts for copy.
and registration. Any new features revealed by the 1968 photography were added during edit application. This photography was taken after the area was flooded and a comparison was made with the compiled shoreline.

Field edit was completed in September 1969.

1:10,000 scale chronoflexes and 1:20,000 scale reductions were furnished Marine Charts. Due to a change in their priorities, completion was delayed on this project. Review and registration was re-scheduled and completed in June 1971.

Submitted by:

J. P. Battley, Jr.
Areal Field Inspection

The area is the reservoir to be formed by the John Day Dam on the Columbia River, between the states of Washington and Oregon. The land adjacent to this section of the river could be considered semi-arid, with dry land grain farming on the plateaus above the river gorge and irrigated lands adjacent to the river.

The major portions of the river flows through a rocky gorge, although stretches of the river's present shoreline is of a gravel-stone composition notably the upper reaches of the proposed reservoir.

The color photography furnished the field unit was of good quality for the selection of vertical features.

Horizontal Control

The horizontal control requirements were fulfilled when a selected number of triangulation stations were paneled prior to the flying of the horizontal bridging photography, during the summer of 1967. White plastic or whitewash was used as paneling material. The plastic material required a considerable amount of stones or stakes to hold it in place during windy periods.

Vertical Control:

Vertical Control points had been selected and indicated on the photography furnished to the field party. An elevation was determined in the field for each selected point by trigonometric leveling, using stadia, electrochain or geodetic lengths.

The pool area was inspected for possible critical elevation features in conjunction with the Corps of Engineers topographic maps. Near the upper end of the pool, several islands that are awash during
the spring flooding of the river were considered to be possible
obstruction features even though they are relatively flat. They
will probably form shoal areas once the reservoir has been filled.

A tabulation of the vertical control points (V.P.) and critical
elevation features (C.E.P.) have been compiled as to photograph
number field record book, to aid the compiler.

Recovery notes (form 685A) will be submitted for each C&GS
bench mark recovered. Recovery notes for each U.S. Corps of Engineers
bench mark recovered and used as basic vertical control are being
submitted with a concise description, as the majority of these marks
do not have previous descriptions and the time necessary to make a
complete recovery of each mark was considered to be excessive in view
of the fact many of the U.S.E. bench marks do not meet C&GS requirements
for monumentation and some will be inundated in the near future.

Possible changes may occur on the major areas of Blalock Island,
as it is composed mostly of fine drifting sand. The river currents
after the flooding by the dam, will probably cause some degree of
erosion as the sand is primarily in ridges and dunes. Along the
south shore of the river in the vicinity of the old railroad station
of Quinton, Oregon is an area composed of a large group of rocky
outcroppings (Photo 67y7109). The elevations of the most prominent
outcroppings were determined in the field. This area should be
charted foul.

Shoreline Inspection

The alongshore area including the river islands were inspected
and classified as to their sediment characteristics. After the flooding
of the reservoir, this will give the equivalent of bottom samples. This data was indicated on the field photographs.

Field Methods:

The majority of the field trigonometric leveling was performed with the Wild TIA theodolite. This particular instrument incorporates a self leveling vertical circle feature which expedited each instrument setup. Rod levels were used in conjunction with the stadia rods to insure the verticality of the rods, as the wind was a frequent factor. The U.S. Geological Survey "Stadia Tables for Obtaining Differences of Elevations". No. 9-1163 was used in the computations.

The use of the electrochains to determine distances were used only when the physical conditions of the terrain made the usual trig-level impractical.

Only two full sets of instrument readings were recorded for each observation setup instead of the normal procedure of two full and eight fine sets of readings. In each case an offset or eccentric point was occupied. In effect this allows a double-determination of the new point by a sliver triangle. When the electrochains were used reciprocal observations were observed with the Wild T-2 theodolite.

Field Problems

It was necessary to be selective in the choice of horizontal control stations to be paneled as the panels required a relatively large area, the remote stations were selected as the panels would not have to be set in cultivated areas. The plastic paneling material undergoes a change when exposed to the elements and becomes quite brittle after a short period and more or less disintergrates and the fragments are
scattered by the winds. In the future it may be necessary for the field units to revisit and remove the paneling after photography to control the litter problem.

Steep, rocky cliffs required a zigzag course to maintain the 10 degree vertical angle maximum as per the project instructions. No particular difficulty was encountered other than the reservoir area was being cleared of cultural features and the removal of bridges, culverts and the construction of railroad and highway right-of-way fences created an access problem at times.

Contact with the U. S. Corps of Engineers, Walla Walla District can be made with Mr. J. P. Futhey, Phone 509-525-5500, extension 400, Walla Walla, Washington

Approved: Gerold L. Short
CAPTAIN, USESSA

Respectfully Submitted:
Robert B. Kelby
Chief Photo Party
Pacific Marine Center
21. **Area Covered**

This report covers the Columbia River from the John Day Dam to the McNary Dam, consisting of seven (7) 1:20,000 scale T-sheets, T-13211 thru T-13217.

22. **Method**

Twelve (12) strips were bridged using analytical methods. Strips 1 and 2 were 1:60,000 scale panchromatic diapositives and strips 3 thru 12 were 1:20,000 scale color diapositives. Numerous tie points were located from the 1:60,000 scale photography to control the 1:20,000 scale photography.

The attached sketch of the strips bridged shows the placement of triangulation used in the final strip adjustments. Closures to both horizontal and vertical control are shown for each strip on the IBM readouts along with all bridge points on Oregon Zone 1 plane coordinates. All points have been converted to Mercator values.

23. **Adequacy of Control**

All horizontal control was premarked and was adequate to control the 1:60,000 scale bridge.

Since the vertical accuracy of our bridging results was of prime importance, the field party was required to furnish elevations to insure results of high accuracy. The results of our bridging proved their work to be very good. The RMS deviations for 173 vertical points in our bridged strips was 1.0 feet.

24. **Photography**

The definition and quality of the RC-9 "M" and RC-8 "X" photography were good. No difficulty was encountered in the bridging of any strip.

Respectfully submitted,

[Signature]

I. I. Saperstein

Approved and forwarded,

[Signature]

Chief, Aerotriangulation Section
COMPILATION REPORT
T-13217

Refer to Descriptive Report No. 13211 for Field Inspection and Photogrammetric Plot Report.

31. Delineation

T-13217 is a 1:20,000 scale chart compilation manuscript that ends at the McNary Dam. Worksheets for T-13217 were compiled on the B-8 stereoplotters at a scale of 1:10,000. Color photographs, scale 1:20,000, taken November 2, 1967, were bridged and used in the instrument. This photography was supplemented with color photography taken in June 1968 after the John Day Pool area was flooded. The 1:10,000 scale ratio prints of 1968 photographs were compared with the compiled worksheets and additions or revisions were made prior to inking. Two worksheets were inket at 1:10,000 scale to cover the area. The scale afforded clarity of the compiled features (see the Summary in Descriptive Report T-13211). A cronaflex copy and ozalid copies were ordered for these worksheets for field edit use. After field edit is applied, one-half reduction cronaflexes will be made and paneled onto the 1:20,000 scale manuscript.

32. Control

All horizontal control was premarked and adequate in density and placement. Vertical control was of prime importance for this project as the area contoured is to be used as a bathymetric chart (depth curves, etc.). Excellent vertical accuracy was achieved in the bridge from numerous field-identified vertical points. (See the Photogrammetric Plot Report.)

33. Supplemental Data

None used in photogrammetric compilation.

34. Contours and Drainage

Color photography at 1:20,000 scale was bridged by analytic methods and used in the B-8 stereoplotters for contouring. This photography, taken in November 1967, before the pool area was flooded was of good quality and contours within the required accuracy (±2 feet) were obtained. Contours were drawn at prescribed intervals from the old river shoreline (247 ft.) to 259 ft. at 6-ft. intervals, then 3 ft. to the 265-ft. which is the shoreline. In congested areas, the 262-ft. contours were eliminated.
35. **Shoreline and Alongshore Details**

The shoreline was delineated as stated in Item 34. Color photography of 1968 taken after the John Day Pool was flooded, was ratioed and compared with the contoured shoreline. Minor differences were noted and revised.

36. **Offshore Details**

No comment.

37. **Landmarks and Aids**

Ten aids to navigation are located from U.S. Coast Guard positions and all agree with the photogrammetrically located positions. Landmarks are to be located by field edit.

38. **Control for Future Surveys**

None

39. **Junctions**

Junctions were made to the west with T-13216. There were no T-sheets east of T-13217.

40. **Horizontal and Vertical Accuracy**

Refer to paragraph No. 23 of Photogrammetric Plot Report, also paragraph No. 32 of the Descriptive Report.

41 thru 45.

Inapplicable

46. **Comparison with Existing Maps**

Comparison has been made with USGS Quadrangles Irrigon, Washington-Oregon, and Umatilla, Washington-Oregon, scale 1:24,000, dated 1962, contour interval 10 feet. The quads were enlarged to 1:10,000 so that detail could be checked. Compilation instructions state that all detail and the 300- and 400-ft. contours that have been changed above the 265-ft. pool level, should tie into the contours on the existing quads. Areas of change were recompiled and this tie made.

47. **Comparison with Nautical Charts**

Comparison was made with Nautical Chart No. 6162, scale 1:20,000, 2nd edition, dated September 1967, at which time John Day Pool
Dam was under construction. Preliminary Chart No. 6162, scale 1:20,000, 3rd edition, dated June 1968, was compiled from John Day Lock and Dam Reservoir drawings by the U.S. Corps of Engineers dated 1965 using an interpreted line between 260 and 270 ft. as the 265-ft. pool level for the shoreline.

Items to be applied to Nautical Charts immediately: None

This is a new chart compilation.

Respectfully submitted:

John C. Richter
Cartographer

Approved and Forwarded:

K. N. Maki, Chief
Compilation Section
FIELD EDIT REPORT

Chart Topography
Lake Umatilla (John Day Pool).
Columbia River, Washington-Oregon
March 1969
Map Manuscripts T-13211 through T-13217

This report covers the area of Lake Umatilla as formed by the
John Day Dam on the Columbia River and common to the states of Wash-
ington and Oregon.

The entire shoreline was inspected by vehicle or small boat. The
shoreline and alongshore features were compared with the field edit
copies of the map manuscripts (discrepancy prints) and/or the field
edit color photographs.

The level of the water surface of the pool fluctuated several
feet during the time of the field editing. The pool level for several
days was below the normal elevation of 265 feet above mean sea level.
The lower water provided ready field inspection of the exposed rocks
and shoal areas.

The field edit copies (discrepancy prints) of the map manuscripts
were used as the index for the field corrections and the numbers of
the photography used for such corrections appear on the discrepancy
prints.

52. Adequacy of Compilation:

The extent and accuracy of the maps appear to be reasonably
complete, considering the compilation was without the benefit of
field inspection.

All the discrepancies were investigated and resolved.

Cliffs and bluffs are in evidence in the westerly portion of the
project area. Generally the cliffs and bluffs are too extensive to
attempt to designate a particular escarpment as a landmark. Office
interpretation could show the extent of the most obvious of these
features by the hachure symbol or contour lines if so desired.

There are so few buildings in the area, that nearly every shore-
line cultural feature is of landmark value. Along the railroads are
several small communities consisting of several dwellings and usually
a small, elevated water tank. These small communities are the
residence for the railroads maintenance and service crews. It is
recommended the buildings be mapped and the elevated tanks symbolized
as small tanks.

Various parks, recreation and wildlife management areas are
found along the shores of the lake in varying stages of construction
or development. These features appear on the U. S. Corps of Engineers
maps and are included with the geographic names data. The recreation
areas are generally an auto parking area, a surfaced, small boat launching ramp, a float and comfort facilities. In some of the larger areas, like Boardman and Umatilla, piling has been driven and floats for the moorage of small craft are in different stages of construction. In some instances only the capped piling are in place, near a surfaced ramp, and will be used to secure the floating piers.

All fixed aids to navigation were inspected and photo-identified or the office identification was verified. Two aids near McNary Dam that were beyond the limits of the color photography were field checked by triangulation intersection methods. Several of the fixed aids to navigation were not found on station, but were temporarily marked by a buoy. An employee of the U. S. Corps of Engineers, Walla Walla District stated the single "I"-beam pile structures that supported the lighted aids had been destroyed by wave action during violent winter storms. The missing aids were not included on the Form 567. Annotations describing their disposition at the time of the field inspection have been entered on their respective photographs.

Purple ink was used to indicate corrections on the discrepancy sheets. Red-orange tempera, water soluble ink was used for the annotations on the field edit photographs. Green ink was used on both the field edit photography and the discrepancy prints to indicate deletions.

Rocks and shoals were investigated. The elevations of these features in relationship to the water surface at the time the feature was visited, was recorded on the photographs. Several bench marks along the shoreline permitted the field unit to determine the stage of the water surface at the time of the field inspection. In the vicinity of Blalock Island, the flooding waters of the impounded river covered the islands except for a few sand dunes that remained exposed. However, wave action, currents, winds and other natural forces have eroded most of the dunes until they are no longer exposed, but are now shoal areas. Since the dunes were comprised of fine, wind blown sand, the erosion is quite extensive and no doubt it will continue for sometime and the shifting of the shoal areas could be expected to continue for sometime.

Pertinent information pertaining to an individual discrepancy sheet will be listed under that specific sheet in the body of this report.

All landmarks were investigated. All charted landmarks found and all new landmarks have been listed on Form 567. Landmarks that no longer exist have been listed on Form 567 to be deleted.

Geographic Names are the subject of a separate report. Any new names or name changes will be discussed in this separate report.
Sheet T-13211

On this sheet appears the John Day Navigation Lock and Dam. Two navigation lights were photo-identified. They are along the downstream entrance of the navigation lock of the dam.

The light list numbers of several of the fixed aids to navigation have been changed in accordance with the Notice to Mariners #12, dated 6 March 1969.

Several rocks in the vicinity of light 14 were located by sextant fixes.

Along the northeast shore of the John Day River is a one-lane dirt road. The road has been blocked to vehicular traffic at its junction with Interstate Highway 80 North. It is recommended the road should be mapped as a trail.

Several overhead power cable crossings have been indicated.

Sheet T-13212

All fixed aids to navigation were photo-identified. Two new landmarks were selected and identified. Several small boat launching ramps are also found in this area.

In the vicinity of Sundale, there is an orchard with tall wind break trees. It is recommended both the orchard and the configuration of the wind break trees should be shown on the maps, as they are the most salient features in this particular area.

Sheet T-13213

Light 29 was lost during the winter storms and it has been replaced by a buoy. Light 31 is also missing and it too has been replaced by a buoy. However, the steel "T"-beam pile that supported Light 31 is still in place and leaning slightly. It was photo-located and it should be mapped as a lone pile.

The conflict between the names Roosevelt and West Roosevelt (community) will be covered in the geographic names report. Northeast of Roosevelt is a park (Petroglyph Park) that was incorrectly compiled as a cemetery. The park contains boulders with petroglyphs (rock carvings). The boulders had been removed from the areas along the shores of the river prior to its flooding and they are arranged and displayed at the park.

Three landmarks were selected in the area.

Sheet T-13214

All fixed aids to navigation were photo-identified. The river elevation was below the normal pool level and various rocks were investigated and their heights in relation to the existing water surface were determined and recorded on the photography.
A small boat basin and a surfaced launching ramp are found at the mouth of three Mile Canyon.

Sheet T-13215

Castle Rock Light 48 is missing and it has been replaced by a buoy. All fixed aids to navigation were photo-identified.

Considerable changes in the shoaling exists in the area of the Blaock Islands. See the photography of the area as referenced on the discrepancy sheets for the present status of the sand islands and shoals.

An elevated water tank was selected as a landmark in the town of Boardman.

Considerable shoaling and silting at the mouth of Glade Creek has rendered the surfaced launching ramp useless except at higher than normal water elevations of the river.

The feature mapped as an abandoned railroad on the east one of three discrepancy sheets is a dismantled railroad as both the track and crossties have been removed and it is in effect single lane dirt at present.

Sheet T-13216

All fixed aids to navigation were photo-identified. One landmark was also selected and identified.

The old, abandoned railroad grade east of Paterson is rapidly eroding away. The railroad bed was built on a sand fill and the action of the water is gradually reducing the grade to a submerged shoal.

The flooding of the shallow areas can be correctly interpreted from the color photography.

Sheet T-13217

All fixed aids to navigation were photo-identified or field checked. Four landmarks were selected and identified. Two small craft boat basins and four launching ramps were indicated on the field edit photography.

Respectfully Submitted,

[Signature]

Robert B. Melby
Chief, Photo Unit, PMC
GEOGRAPHIC NAMES

FINAL NAME SHEET

PH-6718 (Lake Umatilla, Oregon and Washington)
T-13217

Columbia River
Fourmile Canyon
Irrigon
Irrigon Park
Lake Umatilla
Lake Wallula
McNary Dam
North McNary
Plymouth
Plymouth Park
Sharps Corner
Spokane, Portland and Seattle (R. R.)
State No. 8 (Highway)
State No. 32 (Highway)
Umatilla
Umatilla River
Umatilla Toll Bridge
Union Pacific (R. R.)
U. S. No. 730 (Highway)
Wanahla Marine Park

Approved by:
A. Joseph Wright
Chief Geographer

Prepared by:
Frank W. Pickett
Cartographic Technician
REVIEW REPORT
T-13217
June 1971

61. General Statement
See Summary in Preface.

62. Comparison with Registered Topographic Surveys
None

63. Comparison with Maps of Other Agencies
Comparison was made with USGS Quadrangle Irrigon, Washington-Oregon, and Umatilla, Washington-Oregon, scale 1:24,000, dated 1962, contour interval 10 feet. Revisions necessitated by new construction for the new dams of the first two index contours above the normal pool level (300- and 400-ft.) were made on the B-8 stereoplotter.

64. Comparison with Contemporary Hydrographic Surveys
None

65. Comparison with Marine Charts
Comparison was made with Preliminary Chart 6162, scale 1:20,000 3rd edition, dated June 1968, was compiled from Corps of Engineers' John Day Lock and Sam Reservoir drawings. The shoreline (mean pool level) was interpolated from the contours compiled on these drawings and compared favorably with our compiled shoreline.

66. Adequacy of Results and Future Surveys
This map complies with project instructions and meets the National Standards of Accuracy. T-13217 and the other six maps in this project will provide an excellent base for new charts 673 and 674SC.

Approved by:

Reviewed by:

J. P. Battley, Jr.

Chief, Photogrammetric Branch

Chief, Photogrammetry Division
<table>
<thead>
<tr>
<th>NORTH OF SHEET LIMITS</th>
<th>SOUTH OF SHEET LIMITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.304, 998.65</td>
<td></td>
</tr>
<tr>
<td>797, 267.23</td>
<td></td>
</tr>
<tr>
<td>2.305, 029.57</td>
<td></td>
</tr>
<tr>
<td>797, 315.33</td>
<td></td>
</tr>
<tr>
<td>2.304, 974.43</td>
<td></td>
</tr>
<tr>
<td>797, 472.53</td>
<td></td>
</tr>
<tr>
<td>2.336, 541.87</td>
<td></td>
</tr>
<tr>
<td>797, 277.33</td>
<td></td>
</tr>
<tr>
<td>2.336, 541.87</td>
<td></td>
</tr>
<tr>
<td>824, 327.33</td>
<td></td>
</tr>
</tbody>
</table>

HERMION (USGS) 1942

- 2.304, 998.65
- 797, 267.23
- 2.305, 029.57
- 797, 315.33
- 2.304, 974.43
- 797, 472.53
- 2.336, 541.87
- 797, 277.33
- 2.336, 541.87
- 824, 327.33

GRAP (USGS) 1942

- 797, 267.23
- 2.305, 029.57
- 797, 315.33
- 2.304, 998.65
- 797, 267.23
- 2.305, 029.57
- 797, 315.33
- 2.304, 974.43
- 797, 472.53
- 2.336, 541.87
- 797, 277.33
- 2.336, 541.87
- 824, 327.33

FREIGHT

- 2.336, 541.87
- 797, 277.33
- 2.336, 541.87
- 824, 327.33

CONTRIBUTOR'S REPORT

- DESCRIPIVE REPORT CONTROL RECORD

- SCALE FACTOR: 1:20, 000
- SCALE OF MAP: 1:20, 000
- PROJECT NO.: 6718
- MAP T.: 13277

U.S. DEPARTMENT OF COMMERCE
ENVIRONMENTAL SCIENCE SERVICES ADMINISTRATION
COAST AND GEODetic SURVEy
<table>
<thead>
<tr>
<th>Date</th>
<th>N/A</th>
<th>Location</th>
<th>Latitude</th>
<th>Longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/19/69</td>
<td>6159</td>
<td>Tank</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/05/22</td>
<td>1277-1277</td>
<td>Photo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/20/22</td>
<td>6159</td>
<td>Tank</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/26/22</td>
<td>6159</td>
<td>Tank</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTATION AND OR LANDMARKS FOR CHARTS

Coast and Geodetic Survey
Environmental Service
Administration
U.S. Department of Commerce
Form CAG-207