DESCRIPTIVE REPORT

Topographic | Sheet No. | 4866

State | Texas

LOCALITY
S.W. of Galveston Island
Bastrop Bay, Oyster Bay

193 3-4

CHIEF OF PARTY
Earl O. Heaton
The Topographic Sheet should be accompanied by this form, filled in as completely as possible, when the sheet is forwarded to the Office.

Field No. ..
REGISTER NO. 4866

State..
Texas

General locality... S.W. of Galveston Island
and Bastrop Bay, Oyster Bay

Locality...

Scale 1:20,000 Date of survey Dec. 1933 to Jan. 1934

PROJECT NO. NE-118

Chief of party... Earl O. Heaton
Surveyed by...... J. W. Somers
Inked by.......... W. T. White

Heights in feet above M.H.W. to ground to tops of trees

Contour, Approximate contour, Form line interval... feet

Instructions dated...... Nov. 5, 1932

Remarks:...

Applicant to Chis 1283. July 1935. O.K. Smith
DESCRIPTIVE REPORT
TO ACCOMPANY TOPOGRAPHIC SHEET P
BASTROP BAY, OYSTER BAY, & DRUM BAY
Scale: 1:20,000
Project HT-118, Galveston Bay
Surveyed December 1933 to January 1934
Earl O. Beaton, H. & G. Engr., Chief of Party
J. W. Somers Topographer
Instructions Dated Nov. 5, 1932

General Description of the Coast:
The north and west shores of Bastrop, Oyster, and Drum Bays are low
prairie and marsh land. The southern shores of Oyster and Drum Bay are gen-
erally marsh land. A low sand ridge rises to the southeastward of this
marsh land to meet and form the gulf beach. There are no natural features
of prominence in the area covered by this sheet. Grass, weeds, and salt
cedars constitute the principal vegetation. A tall white concrete stack
at Hoskins Mound is the only prominent object east of Freeport on this sheet,
which may be considered useful to mariners.

The Galveston and Brazos River Canal, 40 ft. wide, project depth of 5 ft.
extends through Oyster and Drum Bays. This canal is subject to rapid shoaling
particularly near Christmas Pt. The channel is marked at frequent intervals
in Oyster Bay, by day beacons.

A narrow and shallow channel extends through Bastrop Bay from Christmas
Pt. to Bastrop Bayou. This channel is poorly marked. A wrecked boat is
located on the west side of the channel near the mouth of Bastrop Bayou. The
east end of this wreck is marked by a 4 x 4 stake with one cross slat about
6 ft. above M.H.W.

Landmarks:
STACK - white concrete, ▲ Hoskins Mound, 1931.

Aids to Navigation:
BEACON 1, (▲ Mud Island Channel En. 1)
BEACON 1, (Ace), Christmas Pt. Ch. En. 1.
BEACON 3, (▲ Trey), " " " 3
BEACON 5, (▲ Ducie) " " " 5
BEACON 1, Oyster Bay Ch. En. 1
BEACON 5, " " " 5
BEACON 7, " " " 7
BEACON 9, " " " 9
BEACON 2, " " " 2
BEACON 11, " " " 11
BEACON 13, " " " 13

Character of Control Used:
Sheet P is controlled by nine second order triangulation stations; Freeport
Mtn. W.T., Bend, Well, Light, Skeet, Will, Slough, Bidge, Tatlim, and by six
third order triangulation stations; Strey, Bastrop, Mud Island Ch. En. 1, Hart-
rick, Clute, Red Bluff, and intermediate control by planetables.

Closing Errors and Methods of Adjusting:
<table>
<thead>
<tr>
<th>Station</th>
<th>Closure (meters)</th>
<th>Distance (miles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>▲ Bastrop to junction with Sheet N</td>
<td>5</td>
<td>3.0</td>
</tr>
<tr>
<td>▲ Bastrop to ▲ Ace</td>
<td>4</td>
<td>2.6</td>
</tr>
<tr>
<td>▲ Bidge to ▲ Slough</td>
<td>3</td>
<td>2.7</td>
</tr>
<tr>
<td>▲ Slough to Clute</td>
<td>5</td>
<td>4.0</td>
</tr>
</tbody>
</table>
Station Closure (meters) Distance (miles)
\(\Delta \) Clute to \(\Delta \) Hemp 6 1.5
\(\Delta \) Tatum to \(\Delta \) Will 13 4.5
\(\Delta \) Will to \(\Delta \) Skeet 8 3.2
\(\Delta \) Skeet to \(\Delta \) Will 11 2.7

All traverse lines were adjusted as prescribed in the U.S.C.& G.S. Topographic Manual publication #144.

Dates on Triangulation Stations:
Two dates are shown on this sheet for stations which have been recovered. The date of original establishment is shown in parenthesis and the last date of occupation is also shown. This was done because the datum was changed in 1927. The last date is the one which represents the plotted position.

Failure to Agree with Former Work:
Comparing sheet P with chart 1283, very little displacement was found in the shores of Bastrop and Oyster Bays. A large area in the west end of Drum Bay has filled in and is now marsh land. On the south side of the Galveston and Brazos River Canal the west end of Drum Bay is now 750 m. east of its charted position. North of the canal Drum Bay has filled in eastward to Drum Pt., a distance of 1 ½ mi. Rogue Islands no longer exist and it is recommended that they be deleted from the chart. These changes are probably due to silt deposits left by flood water in the Brazos River and Oyster Creek. The gulf beach has receded from 20 to 150 m. as noted below: at \(\Delta \) Tatum, 20 m.; at \(\odot \) Snif, 60 m.; at \(\odot \) Log, 150 m.; at \(\odot \) Skeet; 150 m. At \(\Delta \) Well there is not apparent change in the shore line. This recession is due to wave action, both normal and during storms. Beacons 3 and 15 in Oyster Bay Channel no longer exist.

List of Plane-table Positions:
B. M. U.S.E.D. - Christmas Pt.
Lone - lone tree.

Changes in Shoreline:
No changes of any importance have taken place in this area except in the west end of Drum Bay as previously noted in this report.

Character of Marsh and Extent Covered by High Water:
About 75% of the marsh shown on this sheet is 6 inches or more above high water and the remaining 25% floods at M.H.W. The soil in the marsh on the north and west shores of Bastrop, Oyster, and Drum Bays is black mud and shell. The marsh along the south shore of these bays is mud, sand, and shell. All of these marsh areas sustain a heavy growth of grass and weeds.

Photo Topographic Work Transferred to Plane-table Sheet:
When the work on sheet P was being done in the field, it was known that aerial photographs were being taken of this area and for this reason plane table work was carried back inland only about ½ mile on the northwest side of Oyster, Drum, and Bastrop Bays. Northwest from this point the topography has been transferred from the Photo Topographic Sheet to the plane table sheet so that the area is shown through which the new intracoastal waterway will pass. The projected intracoastal waterway has been transferred to the plane table sheet from the U.S. Engineers blueprints and it was also transferred to the Photo Topographic Sheet in the same manner. (Engineers blueprints and data accompany this sheet)
The report for the photo topographic sheet accompanies this report and the phototopographic sheet is being submitted with the plane table sheet.

Inspected and Approved:

Earl O. Beaton,
Chief of Party, C.& G.S.

Respectfully submitted,

J. W. Somers,
Observer.
REPORT FOR PHOTO TOPOGRAPHIC SHEET
vicinity of
BASTROP, OYSTER, and DRUM BAYS
to accompany
Plane tablet Sheet of party of Lt. E. O. Heaton

1. COMPILATION BY:

<table>
<thead>
<tr>
<th>Task</th>
<th>Name</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projection</td>
<td>Ben Benson</td>
<td>8/6/34</td>
</tr>
<tr>
<td>Projection Checked</td>
<td>J. L. Smith</td>
<td>8/7/34</td>
</tr>
<tr>
<td>Control Plotted</td>
<td>Ben Benson</td>
<td>8/8/34</td>
</tr>
<tr>
<td>Control Checked</td>
<td>R. J. Moore Jr.</td>
<td>8/9/34</td>
</tr>
<tr>
<td>Topography Transferred</td>
<td>Ben Benson</td>
<td>8/24/34</td>
</tr>
<tr>
<td>Smooth Radial Line Plot</td>
<td>Ben Benson</td>
<td>8/22/34</td>
</tr>
<tr>
<td>Radial Line Plot Checked</td>
<td>T. M. Price Jr.</td>
<td>8/25/34</td>
</tr>
<tr>
<td>Detail Inked</td>
<td>Ben Benson</td>
<td>8/25/34</td>
</tr>
</tbody>
</table>

2. GENERAL INFORMATION

This sheet was compiled from photographs taken by the U.S. Army Air Corps using Fairchild T-3A Camera #51-76. The photographs used were #106-122 L-flight taken December 19, 1933 at 10:47 A.M. to 11:18 A.M.

The shoreline of the bays, inland waterways, and Gulf was traced directly from the 1:20,000 plane table sheet which this sheet accompanies.

3. CONTROL

Triangulation by E.O.H. 1933, 1934.
Triangulation by U.S.E.D. 1927 recomputed by E.O.H. 1938.
The control is adjusted to 1927 N.A. Datum.
The field parties geographic positions were used.

4. COMPILATION

(a) General Remarks

This sheet was prepared for the particular purpose of supplementing the information already obtained on the 1:20,000 plane table sheet of the party of Lt. E. O. Heaton covering this area.

The detail desired was in the area extending inland about one to two miles NW of Drum, Oyster and Bastrop Bays, along the proposed route of the new intra coastal canal, as well as any other information shown on the photographs not obtained by the plane table party, in the limits of their survey.
4. Compilation (contd)

(b) Plot

A preliminary plot was not made. Since it was desired to transfer detail to a 1:20,000 scale sheet, the projection was made with a scale factor of one. The photographs of the same flight to the SW have a scale factor of 0.96 and it is believed that the photographs covering the sheet also have a scale factor of 0.96.

The standard method of radial line plot was used. No unusual adjustments were made and the intersections obtained were good. The intersections obtained in the area N of Bastrop Bay to West Bay were weak, however, since this area extends far into the wing prints, the flight does not extend beyond this vicinity, and the control was scarce. However, the topography is marsh, unimportant lakes and sloughs, and of such nature as a whole as not to warrant the expenditure of considerable time and effort to obtain the maximum degree of accuracy possible.

(c) Detail

The shore line was transferred from the plane table sheet which this sheet supplements, in order to indicate and bound the areas to be traced from the photographs. The nature of the topography was interpreted from notes made on the photographs by the field inspection party and from the knowledge of the features gained by the compiler Ben Benson who assisted on the field inspection. All detail was inked and indicated only sufficiently to enable it to be properly transferred to the plane table sheet.

5. Landmarks, Comparisons, Etc.

For information regarding landmarks, comparisons with other surveys, etc., reference is made to the descriptive report of the plane table sheet which this accompanies.

Respectfully submitted,

T. M. Price Jr.
September 22, 1934

Mr. Earl O. Heaton,
Chief of Party, C.& G.S.,
230 Nixon Bldg.,
Corpus Christi, Texas.

Dear Sir:

Inclosed are the ties from the monuments along
the new Intracoastal Canal to the triangulation system requested
in your letter of September 20, 1934.

For and in the absence of the District Engineer:

Very truly yours,

Louis J. Rumage
1st Lieut., Corps of Engineers, U.S.A.,
Executive Officer.

Incl.
2 sketch maps
From U.S. Engineers

Tie in to H-11

Tie in to N-12...
From U.S. Engineers

 Tie in to Well

 Tie to Brazos L.H.
FIG. 1
Texas-Louisiana Intra-Coastal Waterway
Computation of Position of B.M. 575.1

Note: Azimuths and distances obtained from U.S. Engineer's blueprints and sketch maps on yellow sheets.

Back azimuth line to Hall = 376° 38' 15"

Position of
Δ Hall

Datum: N American 1927
Computation for distance B.M. 557 is north of Hall:

\[
\begin{align*}
\log \sin 27^\circ 45' - 00'' &= 1.4752262 - 10 \checkmark \\
\log 3.28087 &= 0.5840110 - 10 \checkmark \\
\theta &= 3.28087 + 0.5840110 - 10 \checkmark \\
\theta &= 3.8648774 \checkmark \\
\text{distance is:} &= 388.9 \text{ meters}.
\end{align*}
\]

Computation for distance B.M. 557 is east of Hall:

\[
\begin{align*}
\log \cos 17^\circ 32' - 48'' &= 9.9797072 - 10 \checkmark \\
\log 3.28087 &= 0.5840110 - 10 \checkmark \\
\phi &= 3.28087 + 0.5840110 - 10 \checkmark \\
\phi &= 3.8648774 \checkmark \\
\text{distance is:} &= 1242.5 \text{ meters}
\end{align*}
\]

Computation of \(a, a',\) and \(a''\)

\[
\begin{align*}
\log 5.973.9 &= 1.7743015 \checkmark \\
\log 3.28087 &= 0.5840110 - 10 \checkmark \\
\log \cos 77^\circ 35' - 10'' &= 9.3723820 - 10 \checkmark \\
\theta &= 3.28087 + 0.5840110 - 10 \checkmark \\
\theta &= 3.8648774 \checkmark \\
a &= 390.1 \text{ meters}.
\end{align*}
\]

\[
\begin{align*}
\log 17^\circ 43' - 1.3 &= 4.341298 \checkmark \\
\log 3.11718 &= 0.5840110 - 10 \checkmark \\
\log \cos 55^\circ 21' - 42'' &= 7.7544877 - 10 \checkmark \\
\phi &= 3.11718 + 0.5840110 - 10 \checkmark \\
\phi &= 3.6911465 \checkmark \\
a' &= 3019.9 \text{ meters}.
\end{align*}
\]

Computation of \(b, b',\) and \(b''\)

\[
\begin{align*}
\log 5.973.9 &= 1.7743015 \checkmark \\
\log 17^\circ 43' - 1.3 &= 4.341298 \checkmark \\
\log 3.11718 &= 0.5840110 - 10 \checkmark \\
\log \cos 55^\circ 21' - 42'' &= 7.7544877 - 10 \checkmark \\
\phi &= 3.11718 + 0.5840110 - 10 \checkmark \\
\phi &= 3.6911465 \checkmark \\
b &= 1772.3 \text{ meters}.
\end{align*}
\]

\[
\begin{align*}
\log 17^\circ 43' - 1.3 &= 4.341298 \checkmark \\
\log 3.11718 &= 0.5840110 - 10 \checkmark \\
\log \cos 43^\circ 40' - 42'' &= 9.5792754 - 10 \checkmark \\
\phi &= 3.11718 + 0.5840110 - 10 \checkmark \\
\phi &= 3.6911465 \checkmark \\
b' &= 6371.3 \text{ meters}
\end{align*}
\]

\[
\begin{align*}
\log 7.960.3 &= 2.9005294 \checkmark \\
\log 3.28087 &= 0.5840110 - 10 \checkmark \\
\log \cos 43^\circ 40' - 42'' &= 9.5792754 - 10 \checkmark \\
\phi &= 3.28087 + 0.5840110 - 10 \checkmark \\
\phi &= 3.8648774 \checkmark \\
a'' &= 1754.8 \text{ meters}.
\end{align*}
\]

\[
\begin{align*}
\Sigma A &= 5164.8 \text{ meters} \checkmark \\
\Sigma b &= 7819.2 \text{ meters} \checkmark
\end{align*}
\]
B.M. 575.1 is south of Hall:
5164.8' - 388.9' = 4775.9' meters

B.M. 575.1 is south of Lat. 29° 07':
4775.9' - 701.3' = 4074.6' meters

Hence B.M. 575.1 is at Lat.:
29° 07' + 1408' meters

B.M. 575.1 is west of Hall:
7819.2' - 1242.5' = 6576.7' meters

B.M. 575.1 is west of Long 95° 07':
6576.7' - 775.1' = 5801.6' meters

Hence B.M. 575.1 is at Long.:
95° 07' + 937.4' meters
Fig. 2. Texas-Louisiana Intracoastal Waterway
Computation of Position B.M. 618.1

Azimuth from N. Drum Bay to Shell is 272° 00' 27"

Position of N. Drum Bay: 29° 01' + 948.3 m
95° 13' + 1332.2 m
Datum: N. American 1824

Computation for \(\log \ c \) :

\[
\begin{align*}
\log 2177.0 & = 3.3378584 \\
\log \sin 42° 06' 47" & = 9.8443725 - 10 \\
\cos \log 3280.87 & = 9.4840910 - 10 \\
\log \sin 112° 21' & = 9.7660346 - 10 \\
\log c & = 2.7001573
\end{align*}
\]

Computation for \(a \) :

\[
\begin{align*}
\log c & = 2.7001573 \\
\log \cos 42° 06' 47" & = 9.870345 - 10 \\
\log 2.5704576 & = 10
\end{align*}
\]

\[a = 371.9 \text{ meters} \]

Hence

Lat. of B.M. 618.1 is:

29° 01' + 576.4 meters

Computation for \(b \) :

\[
\begin{align*}
\log c & = 2.7001573 \\
\log \sin 42° 06' 47" & = 9.8264607 - 10 \\
\log 2.5266180 & = 10
\end{align*}
\]

\[b = 336.2 \text{ meters} \]

Hence

Long. of B.M. 618.1 is:

95° 13' + 44.7 meters
Back azimuth Brazos R.L.H. to WELL 15
69°-12'-58"

Position of WELL
\[
\begin{align*}
28^\circ 57' &+ 2.56\text{ m} - 1590.4\text{ m} \\
95^\circ 17' &+ 271.1\text{ m} - 1558.7\text{ m}
\end{align*}
\]

Fig. 3.
Texas-Louisiana Intracoastal Waterway
Computations of Positions of B.M. 610 and B.M. 607.

Computation of \(\log c \)

\[
\begin{align*}
\log 2891.81 & = 3.461169\checkmark \\
\log \sin 43^\circ 47'-30" & = 9.867746\checkmark - 10 \\
\cos \log 3.28819 & = 9.8480119\checkmark \\
\overbrace{2.8142272} & \\
\log \sin 53^\circ 16'-60" & = 9.9039273\checkmark - 10 \\
\log c & = 2.9108999\checkmark
\end{align*}
\]

Computation for \(a \)

\[
\begin{align*}
\log 53^\circ 17'-08" & = 9.9297665\checkmark - 10 \\
\cos \log 58^\circ 17'-08" & = 2.6606454\checkmark \\
a & = 692.9\text{ meters}
\end{align*}
\]

Hence:

Lat of B.M. 607 is:
\[29^\circ 57' + 949.7\text{ m} \checkmark \]

Computation for \(b \)

\[
\begin{align*}
\log \cos 58^\circ 17'-08" & = 9.7207265\checkmark - 10 \\
\log 2.6606454 & = 2.6316264\checkmark \\
b & = 428.2\text{ meters}\checkmark
\end{align*}
\]

Hence:

Long. of B.M. 607 is:
\[55^\circ -17' + 699.3\text{ m} \checkmark \]
Computation of \(\log c' \)

\[
\begin{align*}
\log 289.91 &= 3.4611698 \\
\log \sin 78^\circ 55.56' &= 9.918839 - 10 \\
\log \cos 3.38087 &= 9.8840110 - 10 \\
\log 2.9370247 &= \\
\log \sin 83^\circ 16.63' &= 9.9037273 - 10 \\
\log c' &= 3.0370974 \\
\end{align*}
\]

Computation for \(a' \)

\[
\begin{align*}
\log c' &= 3.0370974 \\
\log \sin 5^\circ 06.23' &= 8.9409693 - 10 \\
\log \cos 1.9740647 &= \\
a' &= 94.2 \text{ meters} \\
\end{align*}
\]

Hence:

Lat. of BM. 610 is:

28° 57' + 351.0 m.

Computation for \(b' \)

\[
\begin{align*}
\log c' &= 3.0370974 \\
\log \cos 5^\circ 06.23' &= 9.9983391 - 10 \\
\log \sin 3.0314345 &= \\
b' &= 1075.1 \text{ meters} \\
\end{align*}
\]

Hence:

Long. of BM. 610 is:

95° 17' + 1346.2 m.

Computations by W.T.W

... W.T.W.
LANDMARKS FOR CHARTS

AIDS TO NAVIGATION

Corpus Christi, Texas

Sept. 25, 1934

193

DIRECTOR, U.S. COAST AND GEODETIC SURVEY:

The following determined objects are prominent, can be readily distinguished from seaward from the description given below, and should be charted:

Earl O. Beaton
Chief of Party

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>LATITUDE</th>
<th>LONGITUDE</th>
<th>DATUM</th>
<th>METHOD OF DETERMINATION</th>
<th>CHARTS AFFECTED</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEACON 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Admiral Ch. Bn. 1)</td>
<td>29 06</td>
<td>412.9</td>
<td>95 09</td>
<td>739.3</td>
<td>1927</td>
</tr>
<tr>
<td>BEACON 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Eaco)</td>
<td>29 04</td>
<td>1497.0</td>
<td>95 10</td>
<td>378.0</td>
<td>"</td>
</tr>
<tr>
<td>Christmas Pt. Ch. Bn. 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEACON 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Orey)</td>
<td>29 04</td>
<td>918.0</td>
<td>95 10</td>
<td>1016.0</td>
<td>"</td>
</tr>
<tr>
<td>Christmas Pt. Ch. Bn. 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEACON 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Eudo)</td>
<td>29 04</td>
<td>624.0</td>
<td>95 10</td>
<td>1325.0</td>
<td>"</td>
</tr>
<tr>
<td>Christmas Pt. Ch. Bn. 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEACON 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Oyster Bay Ch. Bn. 1)</td>
<td>29 04</td>
<td>696.5</td>
<td>95 11</td>
<td>12.0</td>
<td>"</td>
</tr>
<tr>
<td>BEACON 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oyster Bay Ch. Bn. 5</td>
<td>29 05</td>
<td>859.0</td>
<td>95 11</td>
<td>899.0</td>
<td>"</td>
</tr>
<tr>
<td>BEACON 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oyster Bay Ch. Bn. 7</td>
<td>29 03</td>
<td>199.0</td>
<td>95 11</td>
<td>1232.0</td>
<td>"</td>
</tr>
<tr>
<td>BEACON 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oyster Bay Ch. Bn. 9</td>
<td>29 02</td>
<td>1500.0</td>
<td>95 12</td>
<td>05.3</td>
<td>"</td>
</tr>
<tr>
<td>BEACON 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oyster Bay Ch. Bn. 2.</td>
<td>29 02</td>
<td>698.0</td>
<td>95 12</td>
<td>346.0</td>
<td>"</td>
</tr>
<tr>
<td>BEACON 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Oyster Bay Ch. Bn. 11)</td>
<td>29 02</td>
<td>316.0</td>
<td>95 12</td>
<td>486.4</td>
<td>"</td>
</tr>
<tr>
<td>BEACON 13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oyster Bay Ch. Bn. 13</td>
<td>29 01</td>
<td>1558.5</td>
<td>95 12</td>
<td>803.0</td>
<td>"</td>
</tr>
</tbody>
</table>

Copy checked and verified by:

A list of objects carefully selected because of their value as landmarks as determined from seaward, together with individual descriptions, must be furnished in a special report on this form, and a copy of such report must be attached by the Chief of Party to his descriptive report.

The selection, determination, and description of these points are an important factor in the value of the chart. Landmarks selected at appropriate intervals can be clearly charted. However, when none is outstanding, a group of two or three objects may by their interrelationship provide positive identification. A group so selected should be indicated.

The description of each object should be short, but such as will clearly identify it; for example, a stackpipe, elevated tank, gas tank, church spire, tall stack, red chimney, radio mast, etc. Assign numerals to landmarks to indicate: (1) Offshore, (2) inshore, (3) harbor. 1, 2, 3 would be a mark useful on all charts. Generally, flagstaffs and like objects are not sufficiently permanent to chart.
LANDMARKS FOR CHARTS

Corpus Christi, Texas

September 25, 1934

Director, U.S. Coast and Geodetic Survey:

The following determined objects are prominent, can be readily distinguished from seaward from the description given below, and should be charted:

Earl O. Henton
Chief of Party.

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>POSITION</th>
<th>METHOD OF DETERMINATION</th>
<th>CHARTS AFFECTED</th>
</tr>
</thead>
<tbody>
<tr>
<td>*STACK—white concrete (1, 2, 3) ((\triangle)Hoskins Pond) Freeport Co. stack 1931)</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Datum</td>
</tr>
<tr>
<td>28 08</td>
<td>391.1</td>
<td>95 14</td>
<td>397.3</td>
</tr>
<tr>
<td>HA.</td>
<td>1927</td>
<td>Triang.</td>
<td>1282, 1117</td>
</tr>
</tbody>
</table>

A list of objects carefully selected because of their value as landmarks as determined from seaward, together with individual descriptions, must be furnished in a special report on this form, and a copy of such report must be attached by the Chief of Party to his descriptive report.

The selection, determination, and description of these points are an important factor in the value of the chart. Landmarks selected at appropriate intervals can be clearly charted. However, when none is outstanding, a group of two or three objects may by their interrelationship provide positive identification. A group so selected should be indicated.

The description of each object should be short, but such as will clearly identify it; for example, a standpipe, elevated tank, gas tank, church spire, tall stack, red chimney, radio mast, etc. Assign numerals to landmarks to indicate: (1) Offshore, (2) Inshore, (3) harbor. 1, 2, 3 would be a mark useful on all charts. Generally, flagstaffs and like objects are not sufficiently permanent to chart.
Section of Field Records

REVIEW OF TOPOGRAPHIC SURVEY NO. 4866 (1933)

Bastrop Bay and Oyster Bay, S. W. of Galveston, Texas
Surveyed: December, 1933, to January, 1934
Instructions dated: November 5, 1932

Plane Table Survey

Chief of Party - E. O. Heaton.
Surveyed by - J. W. Somers.

Cloth Mounted

This survey is a combination of plane table topography and air-photo compilation. As stated in the Descriptive Report, the topography, which was located by plane table, includes the area from the Gulf Coast to about one-fourth mile northwest from Bastrop, Oyster and Drum Bays. The area to the northwest was obtained from air-photo compilation and transferred to this sheet.

This survey contains all necessary available information of this area. For that reason, the air-photo section will not make a print of the air-photo celluloid which is filed in the air-photo unit.

The records conform to the requirements of the topographic manual, with the exception that a magnetic meridian was not obtained.

2. Compliance with Instructions for the Project.

The survey complies with the instructions.

3. Junction with Contemporary Surveys.

A satisfactory junction was made with T-4853 (1933) on the east.

T-375 (1862).

A comparison of this survey with the present survey shows a very good agreement in general appearance and character of the shoreline throughout except in Drum Bay where considerable filling in has taken place. This amounts to a shift of the head of Drum Bay of about 750 meters to the east. The Galveston Brazos River Canal is now flanked by marsh (spoil bank) through the whole length of Drum Bay. Oyster Creek formerly emptied into the Gulf at about lat. 28°57.5', long. 95°16.6'. It now empties into Drum Bay as evidenced by the statement in the Descriptive Report that the silting in Drum Bay is probably due to flood waters in the Brazos River and Oyster Creek (D. R. page 2).
There is some discrepancy in the coast line but it does not exceed 150 meters. As stated in the Descriptive Report, it is due to normal wave action, as well as storms.

5. **Field Drafting.**

The field inking of the survey is very good.

6. **Additional Field Work Recommended.**

The survey is complete and no additional field work is required.

7. **Superseding Old Surveys.**

Within the area covered, the new survey supersedes the following surveys for charting purposes:

T-375 (1852) in part.

8. **Bastrop Bay Canal and Intracoastal Waterway (proposed).**

The embankment on the N. E. side of Bastrop Bay Canal and the low water line northeast from Christmas Point were obtained from the air-photo compilation.

The right-of-way for the proposed Intracoastal Waterway was located on this sheet from U. S. Engineer's blueprints and ties which were reduced to the N. A. 1927 Datum. This right-of-way was left in pencil because of the possibility of change of location at time of construction.

Examined and approved:

C. K. Green, F. H. Green
Chief, Section of Field Records. Acting Chief, Division of Charts.

K. T. Adams

Chief, Section of Field Work. Chief, Division of H. & T.