DESCRIPTIVE REPORT

Type of Survey

SHORELINE

Field No.

Office No. T-9138

LOCALITY

State: ALASKA

General locality: PRINCE WILLIAM SCUND

Locality: NASSAU FIORD

1950-57

CHIEF OF PARTY

Field: G. A. Nelson & Fred Natella

Office: L. W. Swanson

LIBRARY & ARCHIVES

DATE
DATA RECORD

T - 9138

Project No. (II): PH-152 (office) Quadrangle Name (IV): Nassau Fiord
 PH-39 (48) field
 CS-277
Field Office (II): Ship LESTER JONES Chief of Party: George A. Nelson

Instructions dated (II) (III):
16 March 1951 (field)
31 Dec. 1954 (office)
11 Feb. 1955 (office)

Method of Compilation (III): Graphic

Manuscript Scale (III): 1:10,000 Stereoscopic Plotting Instrument Scale (III):

Scale Factor (III): 1.0

Date received in Washington Office (IV): JUN 27 1955 Date reported to Nautical Chart Branch (IV):

Applied to Chart No. Date: Date registered (IV):

Publication Scale (IV): Publication date (IV):

Geographic Datum (III): NA 1927

Vertical Datum (III):
Mean sea level except as follows:
Elevations shown as (29) refer to mean high water
Elevations shown as (2) refer to sounding datum
i.e., mean low water or mean lower low water

Reference Station (III): DUKE, 1933

Lat.: 60°15'39.855 123°45.5 m. Long.: 148°17'58.715 902.9 m.
(623.5) (19.9)

Plane Coordinates (IV): State: Zone:
Y= X=

Roman numerals indicate whether the item is to be entered by (II) Field Party, (III) Photogrammetric Office,
or (IV) Washington Office.

When entering names of personnel on this record give the surname and initials, not initials only.
DATA RECORD
T-9138

Field Inspection by (II):
Ross A. Gilmore
David F. Romero

Date:
30 June 1951 to
24 Sept. 1951

Planetable contouring by (II):
Date:

Completion Surveys by (II):
Date:

Mean High Water Location (III) (State date and method of location):
8-29-51; 8-30-51; 8-31-51: Field inspection of photographs

Projection and Grids ruled by (IV): Austin Riley

Date:
1-3-55

Projection and Grids checked by (IV): H. D. Wolfe

Date:
1-10-55

Control plotted by (III): G. S. Amburn
B. Hale

Date:
April 1955

Control checked by (III): C. O. DeMarr

Date:
April 1955

Radial Plot or Stereoscopic Control extension by (III): S. G. Blankenbaker
and R. J. French

Date:
May 1955

Stereoscopic Instrument compilation (III):
Planimetry

Date:

Contours

Date:

Manuscript delineated by (III): C. O. DeMarr
G. S. Amburn

Date:
6-23-55
Nov. 1957

Photogrammetric Office Review by (III): R. J. French
E. H. Loyd

Date:
6-27-55
Nov. 1957

Elevations on Manuscript checked by (II) (III):
Date:
USCGS Single Lens "W" Camera, 6" focal length

<table>
<thead>
<tr>
<th>Number</th>
<th>Date</th>
<th>Time</th>
<th>Scale (Ratio)</th>
<th>Stage of Tide</th>
</tr>
</thead>
<tbody>
<tr>
<td>54-W-2492 thru 2495</td>
<td>26 July 1954</td>
<td>14:46-14:48</td>
<td>1:10,000 (Ratio)</td>
<td>3.9 ft above MLIM</td>
</tr>
<tr>
<td>54-W-2433 and 2434</td>
<td>26 July 1954</td>
<td>14:15</td>
<td></td>
<td>4.1 ft</td>
</tr>
<tr>
<td>77VV, 118VV, 119VV M583 11 Aug. 1950</td>
<td></td>
<td></td>
<td>1:40,000</td>
<td></td>
</tr>
</tbody>
</table>

Tide (III)

Reference Station: Cordova, Alaska
Subordinate Station: Chenega I., Dangerous Passage

Atlantic Marine Center

Review by (IV): C. H. Bishop
Final Drafting by (IV):
Drafting verified for reproduction by (IV):
Proof Edit by (IV):

Land Area (Sq. Statute Miles) (III): -
Shoreline (More than 200 meters to opposite shore) (III): 12
Shoreline (Less than 200 meters to opposite shore) (III): -
Control Leveling - Miles (II): -
Number of Triangulation Stations searched for (II): 1
Recovered: 1
Identified: 1
Number of BMs searched for (II): -
Number of Recoverable Photo Stations established (III): 7
Number of Temporary Photo Hydro Stations established (III): 40

Remarks:

* .94 ratio of ranges suggested by Tides and Currents for Sheets T-9138 thru T-9145 (Excepting Hogg Bay Sub-station ratio for T-9143).
<table>
<thead>
<tr>
<th>Compilation Record</th>
<th>Completion Date</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shoreline compiled</td>
<td>June 1955</td>
<td>Superseded</td>
</tr>
<tr>
<td>New manuscript delineated</td>
<td>Nov. 1957</td>
<td></td>
</tr>
<tr>
<td>Final Review</td>
<td>Dec. 1970</td>
<td></td>
</tr>
</tbody>
</table>
SUMMARY TO ACCOMPANY

DESCRIPTIVE REPORT T-9138

Several years have elapsed between the compilation and final review of this map. The compilation record has been added by the final reviewer.

This shoreline manuscript, scale 1:10,000, is one of 43 maps that comprise Project PH-152, which is in the western part of Prince William Sound. T-9138 includes most of Nassau Fiord.

Compilation was by radial plot, using ratio prints of 1:30,000 scale photographs taken in July 1954. Field inspection was done on 1:20,000 scale ratio prints of 1:40,000 scale photographs taken by the Air Force in August 1950.

Field edit was performed in conjunction with hydrography in 1957. See Descriptive Report by Lorin F. Woodcock. Shoreline corrections were made and additional control was established and identified. In the fall of 1957, a new plot was run and the map was re-compiled, using the additional data.

Final review was done at the Atlantic Marine Center in December 1970.

The compilation manuscript was a vinylite sheet 3 minutes 45 seconds in latitude by 11 minutes 15 seconds in longitude.

A cronaflex copy of the final reviewed manuscript and a negative have been forwarded for record and registry.
2. **Areal field inspection.**—In general, the 1951 photogrammetric field surveys of the Ship LESTER JONES for Project Ph-39(48) consisted of all of item (a) and part of item (b) of paragraph 2, of the project instructions. A PROGRESS SKETCH showing the entire area of field inspection is attached to this report. In accordance with letter 71-jgh, dated 4 October 1951 (copy attached), the field data was compiled in the following order:

Area 1.-- Area east of Uruklik Inlet (part of item 2, (a) of project instructions).

Area 2.-- Remainder of item 2, (a).

Area 3.-- Area in vicinity of Chenega Island.

This arrangement was maintained in compiling control, topographic and peak station data and the various areas are indicated on the attached print of the PROGRESS SKETCH. All data and photographs for Area 1 were transmitted to the Washington Office on 15 November 1951 and the remaining two areas are being submitted as of the date of this report.

Field inspection consisted of (1) recovery and identification of aerial photographs of alongshore triangulation stations; (2) approximate identification of existing interior stations and establishment of a few new interior stations in Area 3; (3) shoreline inspection; and (4) selection and identification of phototopographic and photohydro stations.

In general, the coastline inspected is mountainous with little or no beach except at the heads of bays and larger indentations (usually glacial moraines). In most areas the shoreline is vertical with trees growing to the immediate cliff edge or high water line. The mountainsides are generally covered with a thick growth of coniferous trees interspersed with patches of moss and grass and berry bushes. Alder is found in the glacial valleys and in patches along some of the side slopes, mostly in Area 3. The rock in the area inspected is a very hard granite, oftentimes polished smooth from glacial action. Numerous extensive crevices and faults were noted during the inspection and are very evident on the photographs.

Photographic coverage consisted of nine-lens photographs taken in 1948 and 1949 at a scale of 1:20,000 and single-lens photographs taken by the Air Force in 1950 at an approximate scale of 1:40,000. Ratio prints of the Air Force photographs were furnished on a scale somewhat larger than 1:20,000. Most of the nine-lens photographs were cut to a folded size of 18" x 24" for convenience in handling in the field. Considerable of the nine-lens photographs had been sent to the field in 1948 and had already been cut up in 12" x 12" squares. It was found that better efficiency could be maintained in the field if these squares were rejoined by scotch tape and folded on the cuts to suit the area.
being inspected rather than to use them as individual 12" x 12" squares. Cutting the nine-lens photographs to this small size also creates a difficulty in that shoreline detail is often cut at a disadvantageous place. It was found that by cutting the photographs to a 18" x 24" size and making use of the central portion of the photograph that better results were obtained. All of Areas 1 and 2 with the exception of the Naked Island group and the west side of Perry Island (where single-lens photographs were supplied) were adequately covered by nine-lens photographs except for the main part of Perry Island. Here, the nine-lens coverage was such that extreme wing portions had to be used. This presented a problem in control identification. In general, the definition of the nine-lens photographs was good and were easier to interpret than the single-lens. Here, due to having been enlarged to twice their original scale, the inherent only fair definition of the single-lens photographs was amplified causing considerable trouble and excessive eye strain in making accurate identification. However, the single-lens photographs were more convenient to handle and use in the field than the folded nine-lens photographs. Poor coverage was had in parts of Area 3 due to the excessive width of the flight lines. In some instances there was no overlap in flights in this area.

All shoreline inspection was accomplished using the ship's 20 foot dories fitted with a small "dog house" across the gunwales to protect the photographs and instrumental equipment. However, it was generally necessary to take the photograph out into the daylight for close inspection, thus exposing it to the weather. All notes were made directly on the photographs with a soft lead pencil with leaders to the points pricked or detail noted. No inking was attempted in the field. All control and topographic station data was inked on the photographs in the evening of the same day the field work was accomplished, leaving other data to be inked at a later date. Consequently, a maximum of field work could be accomplished and certainty assured that control data was complete before advancing to a new area.

Photographs were clipped to a piece of light plywood to facilitate handling and at most times the inspector could stand up in the boat and by using the top of the "dog house" as a plotting table carry on his shoreline inspection quite readily. In general, it is believed that sufficient notes have been made to aid the compiler in interpreting the photographs. No attempt was made to use a stereoscope in the dory. This is an impracticability. All stereoscope work was done aboard ship.

3. Horizontal control.—Sufficient alongshore horizontal control stations were recovered and identified. No new stations were established except in Area 3. Here, 4 peak stations were established by occupying recovered triangulation stations (see Geographic Positions, Form 28 b, submitted 15 November 1951). In a good many instances there is a plethora of identified control stations, especially in the Naked Island group and parts of Area 3. However, due to the fineness of detail sometimes on the single-lens photographs and overhanging trees, etc., most stations were recovered with the idea of identification if possible as it would not be
known until arriving at the next station which would be the best to identify. In as much as an attempt was made to recover all alongshore stations anyway, not too much additional time was used in actual identification. It is believed that the plethora of identification was justified in taking all things into consideration.

Station ROCK, 1912 and FERRY ISLAND LIGHT, 1928 were recovered prior to receipt of the single-lens photographs covering this area and inspection and identification had to be made on the outer wing portion of Photo No. 29842. It is possible that better results would have resulted here had better coverage been available at the time of field inspection.

The three control stations identified on single-lens photograph M-383, 28 VV(2) fell outside of the reported 1951 field inspection area. The control data is attached to the photograph and is submitted to assist in controlling the radio plot of Area 3.

A breakdown of recovered and identified horizontal control stations was made for each area and have been listed alphabetically, showing the photograph on which identified and the method of identification. In most cases identification was made by the substitute station method. The above lists are attached to this report. A separate list has been attached showing control stations recovered but not identified, also indicating LOST stations. All alongshore control stations were searched for and have been reported on Form 526, RECOVERY NOTE, TRIANGULATION STATION. All control stations recovered and identified have been shown on the PROGRESS SKETCH for the project.

Peak stations were spot identified as outlined in paragraph 10 of the project instructions. Stations for which a horizontal position is available have been indicated by a large green triangle on the photographs and those without position but having only a single direction and vertical angle have been indicated by a large green circle. All peak stations identified have been listed by areas and are attached to this report. A concerted effort was made to identify as many of these inland stations as practicable depending upon the location of the ship while in an area and also weather conditions at the time. Additional inland stations were determined in Area 3 as called for in paragraph 11 of the project instructions. From necessity, the locations determined depended upon thin intersections. Cuts and vertical angles were taken to additional identified peaks in this area.

4. Vertical control.---Vertical control for contouring by stereoscope instruments can be obtained from the identified alongshore and inland control stations for which elevations are available. No attempt was made to abstract all stations with elevations as this data is available on the geographic position lists. However, an abstract of new elevations determined was made and is attached to this report. The...
vertical angles for stations for which no horizontal position has been determined can be obtained from the ABSTRACT OF ZENITH DISTANCES, Form 29, submitted with other triangulation data on 15 November 1951. Standard methods were used in locating additional peaks and obtaining elevations.

5. Contours and drainage.---

Inapplicable.

6. Woodland cover.---Woodland cover exists in almost the entire area of the project and in most cases is right to the waters' edge. See paragraph 2, of this report for further information regarding this subject.

7. Shoreline and alongshore features.---Shoreline inspection was accomplished in the entire area indicated by cross-hatching on the attached PROGRESS SKETCH. The mean high-water line has been indicated on the photographs and no difficulty should be experienced by the compiler in its delineation. In a great many cases the high-water line is at the immediate bluff edge which is also the tree and grass or tundra line. In some cases the approximate low-water line is indicated on the photographs but generally only the limits of shoal or reef areas are shown. All shoreline inspection was done from a 20 foot dory by skirting along the shore and also by actually going ashore at appropriate places where phototopographic stations were to be selected or horizontal control stations were being recovered and identified. It is believed that sufficient notes have been made to give the compiler a good idea of shoreline and alongshore features. However, it should be pointed out that a lot of shoreline information not specifically shown can be gleaned from reading the short descriptions of the photohydro stations inked directly on the face of the photographs. There are a few piers, landings and buildings alongshore in the area field inspected. These have been indicated on the photographs and all buildings considered worth delineating have been shown.

8. Offshore features.---An attempt was made to indicate all offshore high-water rocks and rocks awash on the photographs. In some instances a 3 point sextant fix was taken or offshore rocks which could not be readily identified. These fixes have been shown directly on the photograph. In some cases were a spot of some nature appeared on the photographs but no actual feature was found a note was made (generally by the letters NE) indicating the feature or spot was not evident upon visiting the area. In a few instances notes were made requesting fur-
other investigation by the hydrographer.

9. Landmarks and aids.---There are two buildings in the area inspected which have been submitted on Form 567 as LANDMARKS. Also, there are 3 fixed aids to navigation which have been submitted on Form 567, two having been previously located by triangulation and the third has been identified as a phototopographic station. Conditions at the time did not warrant locating the latter by triangulation. The above forms 567 accompany this report.

10. Boundaries, monuments and lines.---Generally speaking, this paragraph is inapplicable. However, a General Land Office marker was found on the most northerly extremity of Naked Island and was referenced to triangulation KDI 35, 1949 and classified as topographic station USNI S2454 1939 (GLO). Form 524 has been submitted for this station.

11. Other control.---Recoverable topographic stations were established along the shoreline in accordance with paragraph 13. of the project instructions. In many parts of the project no topographic stations had to be established due to the plethora of triangulation stations. Practically all phototopographic stations established were marked stations. A complete listing of all phototopographic stations by area is attached to this report indicating the photograph upon which the station was identified. Form 524 has been submitted for each station.

Photohydro stations were selected and identified for future hydrographic surveys. A particular effort was made to select stations that could be re-identified and used by the hydrographer. Each station was assigned a temporary field number and indicated on the photograph. From necessity, due to two inspectors working in close proximity to each other, oftentimes using the same photograph another day, or even parts of the same photograph the same day, the numbering system became somewhat jumbled but in no case is there a duplication of numbers on the same photograph. A short description of each photohydro station has been inked directly on the face of the photograph upon which it was pricked. In some instances where the shoreline was too badly shadowed by overhanging trees or bluff, photohydro stations could not be pricked; but generally, very good hydro station coverage is available. As a matter of fact in some cases where the shoreline is considerably broken there is almost a plethora of stations and it will be up to the discretion of the hydrographer which stations to eliminate.
Photohydro stations were selected for the entire area inspected. In the Naked Island group were graphic control had been executed in 1949 and photohydro stations had been built but no photohydro done, an attempt was made to identify the same stations indicated on the copies of the graphic control surveys furnished. In a few cases this was possible and they have been indicated on the photographs in the photohydro station descriptions. A number was assigned to the pricked photohydro station in the usual manner and then the graphic control survey station name was shown in parentheses to indicate that it was the same station originally located in 1949. In some cases the original whitewashes were still evident and in others a railroad spike was found driven into a crack in the rock approximately midway of where the whitewash had been.

12. Other interior features.—There are no bridges or known cable areas in the area field inspected, nor are there any airports or landing fields. Air transportation is all done by float planes in this area. The CAA station in the Dutch Group and the village at Chenega are the most outstanding habitations. Most of the other habitations indicated on the photographs are abandoned fox farms except for the one on the south side of Ferry Island. Here the buildings are kept up and residence maintained the year around.

The village of Chenega has about 90 residents and has a Bureau of Indian Affairs school and post office (both in the same building). There is a Russian Orthodox Church here and a native store. There is a long narrow pier here which was in bad repair at the time of inspection. There are no marine facilities here but water can be obtained by hose at the end of the pier.

13. Geographic names.—A special report on geographic names has been prepared and was forwarded to the Washington Office on 14 November 1951.

14. Special reports and supplemental data.—In addition to the data contained in this report, the following data obtained during the 1951 season by the Ship LESTER JONES is pertinent to the photogrammetric work accomplished in Prince William Sound.

<table>
<thead>
<tr>
<th>TITLE</th>
<th>DATE FORWARDED TO WASHINGTON OFFICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEASON'S REPORT</td>
<td>4 January 1952</td>
</tr>
<tr>
<td>BEACH REPORTS (3), Prince William Sound</td>
<td>18 August 1951</td>
</tr>
</tbody>
</table>
TITLE

BEACH REPORT (1), Prince William Sound 19 October 1951
COAST PILOT NOTES, Prince William Sound 10 October 1951
GEOGRAPHIC NAMES REPORT, Prince William Sound 14 November 1951
SKETCH to accompany GEOGRAPHIC NAMES REPORT 15 November 1951
TRIANGULATION RECORDS and SKETCH (see transmittal letter) 15 November 1951

AREA 1, Ph-39(49), FIELD DATA 15 November 1951
(see transmittal letter)

AREAS 2 and 3, Ph-39(48), FIELD DATA 15 January 1952
(see transmittal letter)

PROGRESS SKETCH, to accompany SEASON’S 15 January 1952
REPORT (tracing)

Approved and Forwarded:

George A. Nelson
Cmdr., CGGS
Comdg., Ship LESTER JONES

Ross A. Gilmore
Commander, CGGS
21. **AREA COVERED:**

The radial plot embraces eight sheets in the vicinity of Knight Island Passage, Whale Bay, Chokaga Island, and Icy Bay on the west side of Prince William Sound:

T-9138, T-9139, T-9140, T-9141, T-9142, T-9143, T-9144 and T-9145

22. **METHOD:**

The radial plot was laid on vinylite manuscripts on which the polyconic projection and the UTM grid were ruled. The eight sheets and the adjoining tabs and manuscripts (T-9146 and T-9147) were joined together in one unit using the grids for junctioning. The attached sketch shows the layout and photographs used and the distribution and density of horizontal control. Positive print paper prints of 3X enlargement from the "W" camera were used on the western part of the plot, and Air Force photography of 4X enlargement (positive) were used on the eastern side where "W" coverage was not available.

The photographs were prepared in the conventional manner choosing shoreline pass points where possible at intervals of about 3 inches and points in the interior at a density of about 6 inches.

Vinylite templet stock was used throughout, and a calibration templet was used to correct for paper distortion errors.

Rays have been drawn on the photographs through those pass points that were used in the radial plot. Certain of the photo-hydro points were pricked as pass point control, and only those that have rays drawn through the point on the photographs were in the main radial plot, and were the points held to in raying in additional detail and photo-hydro points.

The compiler's judgement was used in locating a map position for all the remaining photo-hydros and detail points. A combination of (1) drawing the remaining rays on the templets and relaying them into the plot, (2) graphic manual intersection, and (3) scale check where expedient, were the techniques used to locate the remaining points. All points were located prior to compilation of the shoreline.

Inasmuch as the field identification of control was done on 1:20,000 by the USGS on Air Force photography, and on 1:40,000 by the 30th Engineers, a reasonable tolerance was expected in holding to control in the final closure and adjustment. The attached sketch and tabulated list of stations with the resultant tolerances show the relative accuracy obtained in the 1:10,000 plot.
In general, better closures were obtained where the sub-point method of recovery was used. Almost without exception, the 36th Engineers picked the home station direct, which allowed the radial plot considerable discretion in the closure and adjustment. Most of the stations held well within an accepted tolerance of not in excess of ± 0.5 km. of true position. Manuscripts T-9141, T-9142, and T-9143 are perhaps the most accurate in position. T-9141, T-9142, and T-9143 are next best in horizontal position, and T-9143 is considered the least accurate of the entire group.

The plot was drilled through the various thicknesses of templates through the manuscripts, and the points were circled in red ink where the position was determined by three or more cuts, green if by two cuts only.

This plot should be verified on the east and west sides upon receipt of further field identified control, and it is advisable to use the stereoplani-graph as the bridging instrument since bad tilts and crab in the flight pattern are noticeably evident.

23. ADEQUACY OF CONTROL:

Horizontal control is adequate for those sheets in the middle of the plot, but more accurately identified control is needed on both the east and west sides, and a better plot is anticipated when the field identified control becomes available. Trouble was encountered in the extreme W and NW sides of the plot on T-9134 in Nassau Fiord and on T-9140 in Icy Bay.

It is suggested that topographic stations 418 (MIND, 1951), and 420 (SAND, 1951) in Nassau Fiord, and either 422 (IDOL, 1951) or 423 (JOIL, 1951) in Icy Bay be located by triangulation methods to give a comparison with the existing preliminary plot positions and thereby justify whether a new radial plot should be laid for smooth sheet plotting. No. 177 (Nassau, 1933) did not hold and the identification is considered to be in error. It is requested that it be re-identified for subsequent work.

24. SUPPLEMENTAL DATA:

T-4308 1:20,000 1927
T-4810 1:20,000 1933
T-4808 1:20,000 1933
T-3093 1:20,000 1910

25. PHOTOGRAPHY:

The W camera coverage is better in general as concerns definition and quality of detail than is the Air Force photography on the east side of sheets T-9142 and T-9145. Tree overhang and displacement, and resulting shadows are factors which hindered the accurate recovery of control alongshore,
and will necessitate compiling such shoreline with the dashed line approximation high water line symbol. Placing a central point direct is subject to inaccuracies under the circumstances this photography presents, and hence the plot is weak in the areas mentioned in 23 above. The scale was not good on the “M” 3X enlargements, but was surprisingly good on the 4X Air Force enlargements.

Flight lines should have followed the general NE-SW alignment of these islands in order to afford the radial plot stronger azimuth transfers across the more narrow straits, and thus avoid as many water azimuths as possible.

Approved by: Respectfully submitted:

S. V. Griffith Roscoe J. French
Chief, Cartographic Branch Supervisory Cartographer
Ph-152

HORIZONTAL CONTROL SURVEY OF RAILWAY FLOT NO. 2 (1:10,000)
T-9138, T-9139, T-9140, T-9141, T-9142, T-9143, T-9144, T-9145

157 Jackal, 1933 Sub. pt. 0.2mm.
160 Wagon, 1933 0.2mm.
161 Precip, 1933 Sub. pt. Held
162 Cener, 1933 0.2mm.
163 Icy, 1933 Sub. pt. Held
164 Nigger, 1933 Held
165 Bend, 1933 Sub. pt. Held
167 Shale, 1933 Held
168 Village, 1933 Sub. pt. Held
169 Chanega, 1907 Sub. pt. Held
176 Duke, 1933 Held
177 Nassau, 1933 1.0 mn.
178 Fiord, 1933 Sub. pt. A 0.2mm.
179 Thor, 1933 Held
180 Zeus, 1933 0.2mm.
183 Baron, 1933 0.2mm.
184 Belt, 1933 Sub. pt. Held
185 Olga, 1933 Held
186 Tina, 1933 Sub. pt. Held
189 Vega, 1933 Sub. pt. Held
190 Bebe, 1933 Sub. pt. Held
192 Kit, 1933 Sub. pt. 1.0mm. (Held to home Station)
198 Wat, 1927 Held
199 Goat, 1927 Held
200 Brid, 1927 Held
201 Glac, 1927 0.2mm.
207 Orion, 1933 Sub. pt. 0.2mm.
210 Bain, 1933 2.4mm.
211 Tate, 1948 0.3mm.
213 Pleiades, 1933 Held
214 Sister Rock, 1907 Held
215 South, 1907 Held
217 Squire, 1933 Held
218 Rot, 1910 0.4mm.
219 Ship, 1910 0.2mm.
220 Horn, 1910 0.8mm.
224 Ded, 1910 Held
225A Fos, 1910 Held
229 Guguak, 1910
262 Hydro, 1943
271 Plain, 1943 Held
272 Cross, 1943 0.2mm.
273 Clear, 1943 Held
274 Half, 1943 0.2mm.
275 Pass, 1943 Thin cuts
276 Age, 1943 Held
279 Ruth, 1943 Held
280 Mub, 1945 Sub. pt. Held
281 Low, 1943 Held
282 Sage, 1948 Held
283 Babe, 1948 0.3mm.
284 Dana, 1948 Held
285 Inner, 1948 0.2mm.
286 Sip, 1948 Held

NOTE: All stations that have sub-pts. listed were field identified by USGS on 1:20,000 Air Force photography. All others were field identified direct by 30th Engineers on 1:40,000 photographs.
<table>
<thead>
<tr>
<th>Station Code</th>
<th>Station Name</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>401</td>
<td>RICH, 1951</td>
<td></td>
</tr>
<tr>
<td>402</td>
<td>NEAT, 1951</td>
<td></td>
</tr>
<tr>
<td>403</td>
<td>OATH, 1951</td>
<td></td>
</tr>
<tr>
<td>411</td>
<td>GARB, 1951</td>
<td></td>
</tr>
<tr>
<td>412</td>
<td>PULL, 1951</td>
<td></td>
</tr>
<tr>
<td>413</td>
<td>QUAD, 1951</td>
<td></td>
</tr>
<tr>
<td>414</td>
<td>YANK, 1951</td>
<td></td>
</tr>
<tr>
<td>415</td>
<td>WILL, 1951</td>
<td></td>
</tr>
<tr>
<td>416</td>
<td>LULU, 1951</td>
<td></td>
</tr>
<tr>
<td>417</td>
<td>EDDY, 1951</td>
<td></td>
</tr>
<tr>
<td>418</td>
<td>MINN, 1951</td>
<td></td>
</tr>
<tr>
<td>419</td>
<td>ULNA, 1951</td>
<td></td>
</tr>
<tr>
<td>420</td>
<td>SAND, 1951</td>
<td></td>
</tr>
<tr>
<td>421</td>
<td>BEIS, 1951</td>
<td></td>
</tr>
<tr>
<td>422</td>
<td>IDOL, 1951</td>
<td></td>
</tr>
<tr>
<td>423</td>
<td>JOWN, 1951</td>
<td></td>
</tr>
<tr>
<td>424</td>
<td>TRAM, 1951</td>
<td></td>
</tr>
<tr>
<td>425</td>
<td>DOLT, 1951</td>
<td></td>
</tr>
<tr>
<td>426</td>
<td>NIPY, 1951</td>
<td></td>
</tr>
<tr>
<td>427</td>
<td>FAWN, 1951</td>
<td></td>
</tr>
<tr>
<td>428</td>
<td>KIVA, 1951</td>
<td></td>
</tr>
<tr>
<td>429</td>
<td>FINI, 1951</td>
<td></td>
</tr>
<tr>
<td>430</td>
<td>WINS, 1951</td>
<td></td>
</tr>
<tr>
<td>431</td>
<td>PLEIADES I. LT., 1955</td>
<td></td>
</tr>
<tr>
<td>432</td>
<td>NILE, 1951</td>
<td></td>
</tr>
<tr>
<td>433</td>
<td>ZEST, 1951</td>
<td></td>
</tr>
</tbody>
</table>
21. Area Covered:

This aerial plot covers three sheets T-3187, T-2915, T-2917 and the western limits of T-711 and T-2111. The plot was originally laid in May 1957 and covered eight T-sheets. The sheets covered in this plot comprise the western end of the original plot. (See plot sketch)

22. Method:

Additional control was established and identified in 1957 by the field party in the above-mentioned area. This plot was begun in the area to the east (Whale Bay area), which was well-controlled originally. It was extended northwesterly into the area of the new control. The plot was laid on the original manuscripts utilizing the same templates with the additional control added.

The new control established a rigid plot for the area with good closures on control pass points and azimuths. In general there was a shift in datum of 1.0 mm W-NW in this area because of the stronger fix in datum obtainable by the new control. (See item 23 - control below)

23. Adequacy of Control:

As noted under item 23 of the original plot report, trouble was encountered in the area of this plot. With the additional control established in 1957, an accurate fix in datum was obtained. Horizontal control stations used to control this plot are shown on the attached sketch.

Triangulation station "ZEUS 1933" was reported as held in the prior plot. The sub. station was identified on two photographs and erroneously held in the plot to the home station. The sub. station is 2.3 mm S-W of the home station, and was held in this plot. This will effect a shift in detail of approximately 2 mm in S-W direction.
Except as discussed below all control was held in fit:

"MIZZ " -- Stn. Sta. 5 held. Sta. 3 was missed by 0.6 m but was reported as missed by 0.2 m in the original plot.

"MIZZ " -- Missed by 1.0 m in original plot; missed by 0.5 m in this plot. Only two piezals on station. Other control held nearby.

ULNA 1951-1957 -- (topographic station - position established by theodolite directions) 0.5 mm S of plotted position, two piezals only. Four triangulation stations held nearby.

JOWE 1951-1957 (topographic station - position established by short traverse) 0.6 mm NE of plotted position. A point on the photograph that fits the description falls 0.6' S of the point used in the plot. This point would have held in the plot. Other triangulation stations held nearby.

24. Supplemental Data:

Inapplicable (see original report).

25. Photography:

See original plot report.

Submitted by:

J. P. Battley Jr.

J. P. Battley, Jr.
Cartographer

Approved by:

E. H. Ramey, Chief
Graphic Compilation
November 1927

Radial Plot Sketch
(Supplemental to original plot)

- Indicates control held in the plot (topographic or triangulation)
- Indicates control not held

* Ford sub pt B "Held", sub pt A fell 0.4 m S of the plotted position.
<table>
<thead>
<tr>
<th>STATION</th>
<th>SOURCE OF INFORMATION</th>
<th>DATUM</th>
<th>LATITUDE OR θ-COORDINATE</th>
<th>LONGITUDE OR ρ-COORDINATE</th>
<th>DISTANCE FROM GRID OR PROJECTION LINE IN METERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duke Sub. Sta.</td>
<td>Field Pos.</td>
<td>n</td>
<td>60-15</td>
<td></td>
<td>1227.2</td>
</tr>
<tr>
<td>Sand 1951-57</td>
<td>n</td>
<td>1927</td>
<td>148-21-44.755</td>
<td></td>
<td>902.9 (19.9)</td>
</tr>
<tr>
<td>Will 1951-57</td>
<td>n</td>
<td>n</td>
<td>60-15-56.061</td>
<td></td>
<td>1735.1</td>
</tr>
<tr>
<td>Mind 1951-57</td>
<td>n</td>
<td>n</td>
<td>60-16-55.110</td>
<td></td>
<td>343.6</td>
</tr>
<tr>
<td>Ulna 1951-57</td>
<td>n</td>
<td>n</td>
<td>60-15-42.783</td>
<td></td>
<td>1324.1</td>
</tr>
<tr>
<td>Nassau 1933</td>
<td>VI 159</td>
<td>n</td>
<td>60 14</td>
<td>148 19</td>
<td>1825.3 31.7</td>
</tr>
<tr>
<td>Nassau Sub Sta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>593.7 329.3</td>
</tr>
</tbody>
</table>

1 FT = 0.3048006 METER

COMPUTED BY: C. O. DeMarr
DATE: 16 March 1955
CHECKED BY: S. G. Blankenbaker
DATE: 7 April 1955
31. **DELINEATION:**

Shoreline and foreshore features were delineated on the manuscript from stereoscopic interpretation, using 1:20000-scale field photographs as a guide.

Features shown were first drawn on a piece of vinylite superimposed on the photograph with the most nearly true scale. Graphic methods were then used to compile and delineate the MHWL and to adjust the planimetry to manuscript scale by holding to compilation points of near-sea-level elevation. Since the photographs were of such poor scale the reflecting projector had to be used extensively.

In two instances the displacement of trees or high cliffs, and shadows, necessitated the showing of the approximate MHWL symbol.

Where Chenega Glacier meets to form the west shoreline of Nassau Fiord the approximate HWL symbol was shown.

Due to the fact that the photography was flown at nearly half-tide with the W Camera, much of the shallow areas alongshore show as being close to the approximate low water line, and have been symbolized in preference to the dashed shallow line symbol. These areas should be verified before charting.

32. **CONTROL:**

The radial plot report is filed with T-9144.

Only one field identified control station was held in the plot. This being the only control in the area two additional stations, topo's Mind, 1951 and Sand, 1951 are requested to be triangulated for the purpose of controlling the Nassau Fiord area for the smooth sheet plotting.

33. **SUPPLEMENTAL DATA:**

USGS Topographic Survey No. 4810 dated Sept., Oct. 1933, scale 1:20,000
USGS Topographic Quadrangle, Seward (B-4) Alaska, dated 1952, scale 1:63,360
USGS Chart 8551, scale 1:200,000, published May 1952, revised May 1954
" 8528, scale 1:81,436, published Feb. 1930, revised Aug. 1951

The above data was used as an aid in the delineation of shoreline and offshore features.

34. **CONTOURS AND DRAINAGE:**

Contours not applicable.

A few of the most prominent streams have been shown, particularly several glacial streams.
35. **SHORELINE AND ALONGSHORE DETAILS:**

The shoreline and alongshore features were delineated as stated in Paragraph 31, above.

In regard to the interpretation of the MHWL, it should be noted that the photographs were taken before half-tide, the range being 11.6 feet. Several fairly definite lines alongshore are visible on the photographs. The line judged most likely to be the MHWL was chosen and a consistent effort was made to delineate this line on the manuscript.

Wider use was made of the low-water line symbol than is generally the case on preliminary manuscripts. The horizontal position of the low-water line is questionable due to the range of tide and time of photography.

The small portion of the MHWL shown with the approximate MHWL symbol is believed to be accurate in relation to the other details on the manuscript as regards relative position and general configuration. Because of tree or cliff overhang and heavy shadows, field verification is needed in these areas.

36. **OFFSHORE FEATURES:**

Two rocks just south of station Lulu, 1951, were field-inspected and are shown on the manuscript as being 8 and 9 feet above mean low water. It is not certain that these two rocks are correctly office-identified and their positions are questionable until verified by the hydrographer.

37. **LANDMARKS AND AIDS:**

Not applicable.

38. **CONTROL FOR FUTURE SURVEYS:**

Seven recoverable topographic stations have been located and 524 cards have been submitted to the Photogrammetry Division files. The positions of the topographic stations are considered preliminary until verified by the field party. (Stations repositioned by 1957 compilation and 1957 triangulation.)

Numerous photo-hydro stations were field identified; however, not all of them were located due to the scale of the field photography which made office identification difficult. It is believed those shown are most reliable in office recovery and position.

A list of recoverable topo stations and photo-hydro stations is submitted under paragraph 49.

39. **JUNCTIONS:**

Junctions were effected to the east with T-9139 and to the south with T-9140. There are no contemporary surveys on the north or west.
40. **HORIZONTAL AND VERTICAL ACCURACY:**

Inasmuch as there is a scarcity of control in this area, the positioning of shoreline and offshore features may be subject to change, and should be field verified before smooth plotting. See, also, Radial Plot Report, Paragraph 23.

41-45. Not used.

46. **COMPARISON WITH EXISTING MAPS:**

A comparison was made with USGS quadrangle Seward (B-4), Alaska, scale 1:63360, data 1952, during compilation. Due to the scale, this manuscript is of better detail and will supersede the quadrangle when the horizontal accuracy is verified by further field work in 1955.

47. **COMPARISON WITH NAUTICAL CHARTS:**

The manuscript was compared with Nautical Chart 8551, scale 1:200,000, published May 1952, corrected to May 1954.

48. **GEOGRAPHIC NAMES:**

- Nassau Bay
- Icy Bay
- Chenega Glacier
- Tigertail Glacier

49. **NOTES TO THE HYDROGRAPHER:**

7& Recoverable topographic stations are shown on the manuscript:

- **Quad**, 1951
- **Eddy**, 1951
- **Will**, 1951
- **Mind**, 1951
- **Lulu**, 1951
- **Uma**, 1951
- **Sand**, 1951

Photo-hydro stations identified in office from 1:20,000 field photographs:

- Station repositioned by 1957 phot. plot. cut.

247 - Corner point of shoreline with yellow moss above.

247A - Smooth sloping point (there is a prominent light-colored patch of moss at upper part).

249 - Large, lone boulder on HWL at old slide area.

251 - Rock (2).

255 - Outer end of sloping point.

257 - Large, reddish boulder at S.W. end of glacier.

258 - Huge, square, block boulder at N.W. end of glacier.
259 - Conical top (?) of white spotted edge at west end of glacial moraine.

261 - Very light-colored rock just east of north end of glacier (there is a permanent patch of snow-ice to the east).

262 - Rounded nob point with vertical vari-colored stripes.

263 - EWL end of prominent 45° sloping ridge.

264 - Low projecting point of ledge at north end of small bight.

266 - End of gravel beach and beginning of low rock ledge shoreline.

268 - Top of small knoll on point (15). (There is grass and stunted alder atop.)

269. - Top high pt. of rock (10).

271 - HW end of low reddish-colored rock point.

272 - Semi-detached rock (3).

273 - Outer end of outcropping, reddish rock point at north end of gravel beach.

275 - Center of low gravel pile and small clump of stunted alder.

276 - Huge boulder (9) on beach.

277 - Outer corner of triple-edged, fallen rock at EWL at south end of slide area (there is a huge slab-like rock above).

278 - Outer corner of point (there are white strata streaks on face).

280 - White top (9) of ledge.

282 - Center of rock (5).

283 - North end of sloping rock at south end of beach.

285 - North end of peninsula-like point.

286 - South end of projecting portion of peninsula.

288 - HW end (3) of low ledge which slopes to south.

290 - V corner of point at EWL.

291 - South end of flat-faced rock bluff with a few quartz streaks to north.
292 - Top outer end of point (10) with small patch of yellow moss.
307 - Top (7) of north end of low ledge point (there is a small square rock at top).
309 - NW corner point of island at light-colored rock.
311 - Center of grass-topped, outcropping ledge (there is a small spruce atop).
316 - Outer corner point of bluff shoreline with small green spruce at edge.
320 - Square nob of rock shoreline at south edge of narrow crack in cliff (small stream here).
321 - V corner of sloping rock at H WL.
322 - Center of prominent, yellow, moss-covered, rock point.
323 - Lone tree at head of bight. (There are two large boulders here.)
325 - Southerly of two white-topped (6) rocks (there are a few wisps of grass).
SUPPLEMENT TO COMPILATION REPORT

T-9138

November 1957

31. Delineation:

Reference: Compilation Instructions—Supplement 4, Prince William Sound, 23 October 1957

A new manuscript was delineated for T-9138. This was done in order to effect a shift in datum for all features on the survey as determined by a new radial plot. (See Photogrammetric Plot Report (T-9138 thru T-9147) Supplement 1 filed as part of the Descriptive Report for T-9144).

The shoreline was redelineated by generally matching pass points on the new manuscript to corresponding pass points on the original manuscript and tracing the detail. The previous compilation was checked with the photographs for correct interpretation.

Shoreline compiled as approximate on the original manuscript was field inspected in 1957 and is shown as definite on this new compilation. Positions differed between the new manuscript and the old as great as 15 meters.

New positions of topographic stations LULU, EDDY and QUAD were obtained by this plot. Also new positions for all photo-hydro stations are shown on the manuscript.

Garnett S. Amburn
Cartographer
October 19, 1970

GEOGRAPHIC NAMES

FINAL NAME SHEET

PH-152 (Alaska)

T-9138

Chenega Glacier

Icy Bay

Nassau Fiord

Tigertail Glacier

Approved by:

A. Joseph Wraight
Chief Geographer

Prepared by:

Frank W. Pickett
Cartographic Technician
49. NOTES TO THE HYDROGRAPHER FOR T-9138, T-9140 and T-9141

The manuscripts for these surveys were revised to incorporate changes in positions of features and photo-hydro stations as determined by additional field work in 1957 and a new photogrammetric plot in 1957. Because of a datum shift, completely new manuscripts were delineated for T-9138 and T-9140.

The manuscripts are now in final form, subject to correction by final office review. Copies of these manuscripts will be available for the processing of hydrographic surveys. In addition the vinylite impression of the original manuscript for T-9141 has been corrected to show new positions for photo-hydro stations.

The Photogrammetric Plot Report for these surveys is filed as part of the Descriptive Report for T-9141.

[Signature]
Everett H. Ramsey
Chief, Graphic Compilation Unit
FORM 1002(T-2) PHOTOCOMMETRIC OFFICE REVIEW

MAP T-9138

PROJECT PH-152

No Form 1002(T-2) was available at the time of final review and none is bound with this Descriptive Report.
The shoreline for all harbours was established using the 1:125,000 scale chart and a graph method. Stations for visual hydrographic were selected by randomly distributed points, by recovery of previously selected stations, or by sites which were suitable. Observations from these stations, on plane-tables, or by sextant and fuses, were marked on the maps. All signals located by visual observation in the field were indicated on the maps with a red circle. A few signals located by plane-table and by triangulation are indicated in the same manner. In a few instances, sextant and fuses were plotted on the maps and the signal locations were indicated by blue circles with the same number. A few signals located by plane-table and by triangulation are indicated in the same manner. In a few instances, sextant and fuses were plotted on the maps and the signal locations were indicated by blue circles with the same number.

Shoreline revisions and unusual methods of hydrographic signal location are summarized below:

Preliminary sketch of map sheet E-514

The north shore of Pieking Island appeared on this map sheet as a dashed line labeled "Preliminary Work." Five signals, VAE, "AE," VAM, EAG, and ASC, were located by theodolite cuts from triangulation stations. These five signals and nearby triangulation stations were used as control to locate the VAM by plane-table and stadia distances. The approximate WNL was removed from the black line impression of the map and the correct shoreline was plotted. The rock reach between ASC and EAG and a small island between WNL and ASC were located during the plane-table work.

Since this is a preliminary manuscript, this portion of the shoreline, the rock reach and the small island should be held fixed when the rest of the shoreline is adjusted to the correct datum.

The approximate VAM in the vicinity of WNL 1990, VNL and on around the small island was located by plane-table. Station WNL was located by plane-table and stadia distance. For this portion of the work, photo-hydro points were used exclusively for control. When the rest of the shoreline in the vicinity is adjusted to the correct datum this portion of shoreline and signal VNL should receive the same adjustment.

Station sketch of map sheet E-514

The approximate VNL between toponymic signal "WNL and triangulation station. VAM 1990 was located by plane-table. The plane-table was set up on WNL, observed on VAM 1990, and the VNL was located by stadia distances to several points. The approximate VNL was removed from the black line impression and the correct VNL added.
The approximate MWL between JOE and MOD was resolved by plane-table, using photograph B-43. Stations DEF, PTV, and MOD were located by plane-table and by photogrammetric control. Stations MOD, PTV, and DEF were located by plane-table. Station ACT was located by plane-table. All this work should be adjusted to the correct datum on the final manuscript.

Stations NAX and MOO were located by plane-table cuts using photogrammetric control. They should be adjusted to the correct datum on the final manuscript.

The approximate MWL in the vicinity of signal BAR was field inspected and the true MWL is indicated on photograph 54F233.

The approximate MWL northwest of photo point 316 was resolved by plane-table. The correct MWL is now shown on the black-line impression.
The approximate LAT of the following locations was recorded in plane-table and the correct LAT is now shown on the black-line impressions:

1. Vicinity of stations FDL and SAB.
2. Vicinity of station TTV, Latitude 43° 15' 16", Longitude 126° 34' 46".
3. Vicinity of HVS 1951 and AMT.

The approximate LAT in the vicinity of topographic station
HVS 1951 was field measured and the true LAT is indicated on chart 5977-72.

No additional shoreline discrepancies were noted during hydrography
and signal building. All signals appear to plot in their correct location
with respect to the NAV.

Special sheets were not prepared for any of the plane-table work.
Some of the field work was done directly on the black-line impressions.
In the remaining cases the field work was done on tracings of the black-
line impressions. In each case, a tracing was used in the field only one
day, and results transferred to the black-line impressions the same evening.
There was no detectable distortion.

The following triangulation stations were identified this year:

<table>
<thead>
<tr>
<th>STATION</th>
<th>PHOTOGRAPH</th>
</tr>
</thead>
<tbody>
<tr>
<td>GROVE 1957</td>
<td>5482899</td>
</tr>
<tr>
<td>FINISH 1957</td>
<td>5482899</td>
</tr>
<tr>
<td>TTV 1957</td>
<td>5482899</td>
</tr>
<tr>
<td>BIL 1954</td>
<td>5483326</td>
</tr>
<tr>
<td>TTT 1949</td>
<td>5483326</td>
</tr>
<tr>
<td>TTV 1948</td>
<td>5483326</td>
</tr>
<tr>
<td>TTV 1946</td>
<td>5483326</td>
</tr>
<tr>
<td>TID 1927</td>
<td>5483326</td>
</tr>
<tr>
<td>TID 1926</td>
<td>5483326</td>
</tr>
<tr>
<td>TID 1925</td>
<td>5483326</td>
</tr>
</tbody>
</table>

In addition, the following topographic stations marked in 1951
and located by radial plot, were re-located by triangulation cuts or short
traverse from triangulation stations: WTV 1957, UTV 1957, JCOL 1957,
SAND 1957.

Approved and forwarded:

Fred Batella
COB, 57/8

Commanding Ship BOHM
61. **GENERAL STATEMENT:**

See Summary on page 6 of this Descriptive Report.

An ozalid comparison print (pages 38 through 42), with differences noted in Item 62, is bound with the original of this report.

62. **COMPARISON WITH REGISTERED TOPOGRAPHIC SURVEYS:**

A comparison was made with T-4810, scale 1:20,000, dated September - October 1933. Differences between T-4810 and T-9138 are shown in blue on the comparison print.

Large sections of the shoreline in Nassau Fiord are shown approximate on T-4810. The approximate location varies greatly with the shoreline on T-9138. There is also a datum shift on the east side of Nassau Fiord where the shoreline on both maps is shown with a definite line.

The shoreline around the section of Icy Bay shown on T-9138 compares more favorably.

63. **COMPARISON WITH MAPS OF OTHER AGENCIES:**

A visual comparison was made with U.S.G.S. Quadrangle SEWARD (B-4), ALASKA, scale 1:63,360, dated 1951. No significant differences were noted.

64. **COMPARISON WITH CONTEMPORARY HYDROGRAPHIC SURVEYS:**

A comparison was made with Surveys H-8389 and H-8390, both 1:10,000 scale and both dated 1957. One discrepancy was noted. It is shown in purple on the comparison print. T-9138 was used as the base for shoreline in the area of comparison.
65. **COMPARISON WITH NAUTICAL CHARTS:**

A visual comparison was made with Chart 8551, scale 1:200,000, 13th edition, dated December 30, 1968. No significant differences were noted.

66. **ADEQUACY OF RESULTS AND FUTURE SURVEYS:**

This survey complies with Job Instructions, Bureau requirements, and the National Standards for Map Accuracy. No accuracy tests were run in the field.

Reviewed by:

Charles H. Bishop

Charles H. Bishop
Cartographer
December 8, 1970

Approved:

Allen L. Powell, RADM, NOAA
Director, Atlantic Marine Center

Approved:

Chief, Photogrammetric Branch, Chief, Photogrammetry Division
COMPARISON PRINT
Blue = T-4810
COMPARISON PRINT

Blue = T-4810
Purple = H-8389

SHORELINE MANUSCRIPT
T-9138
SCALE 1:10,000
PRINCE WILLIAM SOUND
NASSAU FIORD
POLYCONIC PROJECTION
ALASKA UTM GRID ZONE 6
HORIZONTAL DATUM NA 1927
RECORD OF APPLICATION TO CHARTS

FILE WITH DESCRIPTIVE REPORT OF SURVEY NO. J-3158

INSTRUCTIONS

A basic hydrographic or topographic survey supersedes all information of like nature on the uncorrected chart.

1. Letter all information.
2. In "Remarks" column cross out words that do not apply.
3. Give reasons for deviations, if any, from recommendations made under "Comparison with Charts" in the Review.

<table>
<thead>
<tr>
<th>CHART</th>
<th>DATE</th>
<th>CARTOGRAPHER</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>8528</td>
<td>2-29-72</td>
<td>J. A. Graham</td>
<td>Full Part Before After Verification Review Inspection Signed Via</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Drawing No. 8 Examined for critical corr only after final review. No corr. at this time.</td>
</tr>
<tr>
<td>8528</td>
<td>10-20-77</td>
<td>O. Stemberl</td>
<td>Full Part Before After Verification Review Inspection Signed Via</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Drawing No. 7</td>
</tr>
<tr>
<td>14701</td>
<td>6/28/63</td>
<td>L. R. Simmons</td>
<td>Full Part Before After Verification Review Inspection Signed Via</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Drawing No. 16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Full Part Before After Verification Review Inspection Signed Via</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Drawing No.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Full Part Before After Verification Review Inspection Signed Via</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Drawing No.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Full Part Before After Verification Review Inspection Signed Via</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Drawing No.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Full Part Before After Verification Review Inspection Signed Via</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Drawing No.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Full Part Before After Verification Review Inspection Signed Via</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Drawing No.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Full Part Before After Verification Review Inspection Signed Via</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Drawing No.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Full Part Before After Verification Review Inspection Signed Via</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Drawing No.</td>
</tr>
</tbody>
</table>

FORM C&GS-3352 SUPERSEDES ALL EDITIONS OF FORM C&GS-975.

USCGOM.OC 8558-P63