DESCRIPTIVE REPORT

THIS MAP EDITION WILL NOT BE FIELD EDITED

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TP-00052</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Job No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PR-6905</td>
</tr>
</tbody>
</table>

Map Classification
- Class III (FINAL)

Type of Survey
- Shoreline

LOCALITY

- State: DELAWARE
- General Locality: DELAWARE BAY
- Locality: SIMONS RIVER

1969 TO 19

REGISTRY IN ARCHIVES

DATE

U.S. GOVERNMENT PRINTING OFFICE: 1976-649-248
MAP NOT INSPECTED BY

QUALITY CONTROL OF PHOTOGRAMMETRY DIVISION

PRIOR TO REGISTRATION
Descriptive Report - Data Record

Photogrammetric Office:
Coastal Mapping Division, AMC
Norfolk, Virginia

Officer-in-Charge:
Roy Matsushige, CDR

I. Instructions Dated

<table>
<thead>
<tr>
<th>1. Office</th>
<th>2. Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerotriangulation December 10, 1969</td>
<td>Field September 26, 1969</td>
</tr>
<tr>
<td>Compilation May 12, 1970</td>
<td>Amendment I October 7, 1969</td>
</tr>
<tr>
<td>Amendment I April 1, 1971</td>
<td></td>
</tr>
<tr>
<td>Memo (Cancel-Field Edit) December 14, 1979</td>
<td></td>
</tr>
<tr>
<td>Memo (Completion Schedule) June 22, 1981</td>
<td></td>
</tr>
</tbody>
</table>

II. Datums

1. **Horizontal:**
 - 1927 North American

2. **Vertical:**
 - Mean high-water
 - Mean low-water

3. **Map Projection:**
 - Polyconic

4. **Grid(s):**
 - State: Delaware
 - Zone: NA

5. **Scale:**
 - 1:10,000

III. History of Office Operations

<table>
<thead>
<tr>
<th>Operations</th>
<th>Name</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Aerotriangulation</td>
<td>Analytic</td>
<td>D. Norman</td>
</tr>
<tr>
<td>2. Control and Bridge Points</td>
<td>Corodamat</td>
<td>J. Dempsey</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L. Neterer, Jr., A. Shands</td>
</tr>
<tr>
<td>4. Manuscript Delination</td>
<td>Smooth Draft</td>
<td>H. Gann</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A. Shands</td>
</tr>
<tr>
<td>5. Office Inspection Prior to Field Edit</td>
<td></td>
<td>None</td>
</tr>
<tr>
<td>6. Application of Field Edit Data</td>
<td></td>
<td>None</td>
</tr>
<tr>
<td>7. Compilation Section Review</td>
<td>Class III</td>
<td>A. L. Shands</td>
</tr>
</tbody>
</table>

Chief, Imagery Unit:
U.S. G.P.O. 1972-769382/582 REG. #6
1. COMPILED PHOTOGRAPHY

CAMERAS:
Wild RC-8 E and K, Wild RC-9 "M"

TIDE STAGE REFERENCE
☑ Predicted Tides
☐ Reference Station Records
☑ Tide Controlled Photography

<table>
<thead>
<tr>
<th>Number and Type</th>
<th>Date</th>
<th>Time</th>
<th>Scale</th>
<th>Stage of Tide</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ 69-E(C)-2918 and 2919</td>
<td>Oct. 23, 1969</td>
<td>1345</td>
<td>1:20,000</td>
<td>0.1 ft. below MLW</td>
</tr>
<tr>
<td>+ 69-E(C)-2931 thru 2935</td>
<td>Oct. 23, 69</td>
<td>1358</td>
<td>1:20,000</td>
<td>0.3 ft. below MLW</td>
</tr>
<tr>
<td>69-E(C)-2988</td>
<td>Oct. 23, 69</td>
<td>1607</td>
<td>1:20,000</td>
<td>0.5 ft. below MLW</td>
</tr>
<tr>
<td>*x 69-E(C)-3085 thru 3088</td>
<td>Oct. 24, 69</td>
<td>1140</td>
<td>1:40,000</td>
<td>3.8 ft. above MLW</td>
</tr>
<tr>
<td>*+ 69K(I) 4494 and 4495</td>
<td>Oct. 23, 69</td>
<td>1345</td>
<td>1:20,000</td>
<td>0.1 ft. below MLW</td>
</tr>
<tr>
<td>*+ 69K(I) 4506 thru 4512</td>
<td>Oct. 23, 69</td>
<td>1358</td>
<td>1:20,000</td>
<td>0.3 ft. below MLW</td>
</tr>
</tbody>
</table>

Camera focal length: E = 152.71 mm, K = 151.77 mm, M = 88.20 mm

REMARKS
* Centers not shown on manuscript
+ Tide coordinated photography
x Bridging photography used in the Wild B-8 stereoplotter

2. SOURCE OF MEAN HIGH-WATER LINE:
The mean high water line was compiled from photo interpretation of the above listed photography.

3. SOURCE OF MEAN LOW-WATER OR MEAN LOWER LOW-WATER LINE:
The mean low water line was compiled from the above listed tide coordinated infrared mean low water photography.

4. CONTEMPORARY HYDROGRAPHIC SURVEYS (List only those surveys that are sources for photogrammetric survey information.)

<table>
<thead>
<tr>
<th>Survey Number</th>
<th>Date(s)</th>
<th>Survey Copy Used</th>
<th>Survey Number</th>
<th>Date(s)</th>
<th>Survey Copy Used</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. FINAL JUNCTIONS

NORTH
TP-00050 and TP-00051
No Survey

EAST
TP-00054

SOUTH
TP-00116
History of Field Operations

Operation	**Name**	**Date**
4. **Geographic Names Investigation** | |
5. **Photo Inspection** | |
6. **Boundaries and Limits** | |
7. **Supplemental Maps and Plans** | |
8. **Other Field Records** | Forms C & GS 152, 524 |

Source Data

<table>
<thead>
<tr>
<th>Photo Number</th>
<th>Station Name</th>
<th>Photo Number</th>
<th>Station Designation</th>
</tr>
</thead>
</table>
69M-025 | Dipp, 1969 | |

3. **Photo Numbers (Clarification of details)**

None

4. **Landmarks and Aids to Navigation Identified**

None

5. **Geographic Names**: None
6. **Boundary and Limits**: None

8. **Other Field Records** (Sketch books, etc. DO NOT list data submitted to the Geodesy Division)

- 1-form C & GS 152
- 5-forms 524
- 3-forms C & GS 526
I. MANUSCRIPT COPIES

<table>
<thead>
<tr>
<th>Compilation Stages</th>
<th>Date</th>
<th>Remarks</th>
<th>Marine Charts</th>
<th>Hydro Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compilation completed pending Field Edit</td>
<td>April 72</td>
<td>Class III</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final Review, Class III</td>
<td>August 1981</td>
<td>Final Class III map No: Field Edit: Performed</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

II. LANDMARKS AND AIDS TO NAVIGATION

1. REPORTS TO MARINE CHART DIVISION, NAUTICAL DATA BRANCH

<table>
<thead>
<tr>
<th>NUMBER</th>
<th>CHART LETTER NUMBER ASSIGNED</th>
<th>DATE FORWARDED</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td>Nov 1982</td>
<td></td>
</tr>
</tbody>
</table>

Appropriate forms (76-40) are attached with this Descriptive Report.

III. FEDERAL RECORDS CENTER DATA

1. BRIDGING PHOTOGRAPHS; SOURCE DATA (except for Geographic Names Report) AS LISTED IN SECTION II, NOAA FORM 76-36C.
2. SOURCE DATA (except for Geographic Names Report) AS LISTED IN SECTION II, NOAA FORM 76-36C.
3. SOURCE DATA (except for Geographic Names Report) AS LISTED IN SECTION II, NOAA FORM 76-36C.
4. DATA TO FEDERAL RECORDS CENTER. DATE FORWARDED: Nov 1982.

IV. SURVEY EDITIONS

(Transfer each time a new map edition is registered)

<table>
<thead>
<tr>
<th>SECOND EDITION</th>
<th>SURVEY NUMBER</th>
<th>JOB NUMBER</th>
<th>TYPE OF SURVEY</th>
<th>MAP CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP. (2)</td>
<td></td>
<td></td>
<td></td>
<td>II.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THIRD EDITION</th>
<th>SURVEY NUMBER</th>
<th>JOB NUMBER</th>
<th>TYPE OF SURVEY</th>
<th>MAP CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP. (3)</td>
<td></td>
<td></td>
<td></td>
<td>II.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FOURTH EDITION</th>
<th>SURVEY NUMBER</th>
<th>JOB NUMBER</th>
<th>TYPE OF SURVEY</th>
<th>MAP CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP. (4)</td>
<td></td>
<td></td>
<td></td>
<td>II.</td>
</tr>
</tbody>
</table>
SUMMARY TO ACCOMPANY
DESCRIPTIVE REPORT

TP-00052

This 1:10,000 shoreline manuscript is one of seventeen maps that comprise Project PH-6905, Delaware Bay, Delaware. This project encompasses the western part of Delaware Bay from Woodland Beach, latitude 39°20' south to Indian River Inlet, latitude 38°35'.

Correspondence, from the Chief of Photogrammetry dated December 14, 1979, called for the cancellation of field edit on TP-00050 through TP-00058 and TP-00116 and registering these as Class III maps. Maps TP-00050 through TP-00063, TP-00121 and TP-00180 were field edited and are to be registered as Class I maps. No contemporary hydrographic survey was accomplished in the area common to this Class III map.

Field work prior to compilation was accomplished in October 1969. This involved the establishment of horizontal control by premarking methods in order to meet aerotriangulation requirements.

Photographic coverage was provided in October 1969 for aerotriangulation using panchromatic film with the "M" camera at 1:80,000 scale. Compilation photography was color film with the "E" camera at 1:20,000 scale. Tide coordinated low water photography was taken using the "K" camera at 1:20,000 scale; the low water infrared photographs were taken in tandem with the hydro support photography.

Analytic aerotriangulation was performed at the Washington Science Center, April 1970.

Compilation was performed at the Atlantic Marine Center in April 1972. NO copies of this Class III map were submitted for field edit.

The final review was performed at the Atlantic Marine Center in August 1981. Cancellation of field edit requires this map to be registered as a final Class III map compiled from office interpretation of the 1969 photography.

This descriptive report contains all pertinent information used to compile the final class III map.

The original base manuscript and all pertinent data was forwarded to the Washington Science Center for final registration.
FIELD INSPECTION
TP-00052

There was no field inspection prior to compilation. Field work accomplished was limited to the recovery and identification of the horizontal control necessary for the aerotriangulation of the project.
Photogrammetric Plot Report
PH-6905
Delaware Bay

April 3, 1970

21. Area Covered

The area covered in this project is the southwest shore of Delaware Bay. The manuscripts are TP-50 through TP-62 and TP-116 at 1:10,000 scale and TP-63 at 1:5,000 scale.

22. Method

Two strips of 1:80,000 scale panchromatic photography and one strip of 1:30,000 scale color photography were bridged by analytic aerotriangulation methods. Points were selected on the 1:80,000 scale photography common to the 1:40,000 and 1:20,000 scales to be used for compilation of the 1:10,000 scale manuscripts and as an aid during hydrography. Similarly, the 1:30,000 scale bridging photography was used to control the 1:10,000 scale photography for compilation of the 1:5,000 scale manuscript. Attached are sketches showing strips bridged and legend with fit to control.

23. Adequacy of Control

The horizontal control was adequate. Nevertheless, the following discrepancy should be noted: a substitute station was established for LEWES COAST GUARD LIFE SAVING STATION MAST, 1962 which appears in two strips. A discrepancy of 6.5 degrees in azimuth was found between the two azimuth stations from which angles were turned to the substitute station. When the position was computed using the azimuth from Delaware Breakwater West End Light, 1933 the discrepancy in both strips was approximately 13 feet. When the position was computed using the azimuth from LEWES WEST OIL FACTORY CHIMNEY, 1962 the fit to control was excellent. This latter position is evidently correct. No reason could be found for the discrepancy.

24. Supplemental Data

Elevations were taken from USGS topographic quadrangles to meet the vertical control requirements.
25. Photography
The photography was adequate.

Respectfully submitted,

Don O. Norman

Approved and Forwarded,

Henry P. Eichert, Chief
Aerotriangulation Section
<table>
<thead>
<tr>
<th>STATION NAME</th>
<th>SOURCE OF INFORMATION (Index)</th>
<th>AEROTRIANGULATION POINT NUMBER</th>
<th>COORDINATES IN FEET</th>
<th>GEOGRAPHIC POSITION</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td></td>
<td></td>
<td>x =</td>
<td>φ</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>y =</td>
<td>λ</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x =</td>
<td>φ</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>y =</td>
<td>λ</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x =</td>
<td>φ</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>y =</td>
<td>λ</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x =</td>
<td>φ</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>y =</td>
<td>λ</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x =</td>
<td>φ</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>y =</td>
<td>λ</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x =</td>
<td>φ</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>y =</td>
<td>λ</td>
<td></td>
</tr>
</tbody>
</table>

COMPUTED BY: |
LISTED BY: |
HAND PLOTTING BY: |
31. **DELINEATION**

Delineation was by the Wild B-8 stereoplotter using 1:40,000 scale 1969 color photography. Common detail points were selected and transferred to the 1:20,000 scale 1969 color hydro support and infrared photography, which were used to compile the mean low water line graphically.

32. **CONTROL**

The horizontal control was adequate. See the attached Photogrammetric Plot Report, dated April 3, 1970.

33. **SUPPLEMENTAL DATA**

None

34. **CONTOURS AND DRAINAGE**

Contours are not applicable to the project. Drainage was delineated by the Wild B-8 stereoplotter and by office interpretation of the photographs.

35. **SHORELINE AND ALONGSHORE DETAILS**

The mean high water line and alongshore details were delineated by the Wild B-8 stereoplotter and by office interpretation of the photographs.

36. **OFFSHORE DETAILS**

All offshore details were compiled by office interpretation of the photographs. No unusual problems were encountered.

37. **LANDMARKS AND AIDS**

Appropriate copies of the 76-40 forms are being submitted with this Descriptive Report.

38. **CONTROL FOR FUTURE SURVEYS**

None

39. **JUNCTIONS**

See the attached form 76-36B, Item 5 of the Descriptive Report concerning junctions.
40. HORIZONTAL AND VERTICAL ACCURACY

 See Item #32.

46. COMPARISON WITH EXISTING MAPS

 A comparison was made with the following U. S. Geological
 Survey Quadrangle:

 Little Creek, Delaware, scale 1:24,000, dated 1956.

47. COMPARISON WITH NAUTICAL CHARTS

 A comparison was made with the following National Ocean Survey
 chart:

 (Corrected through N. M. 43/69)

ITEMS TO BE APPLIED TO NAUTICAL CHARTS IMMEDIATELY

None

ITEMS TO BE CARRIED FORWARD

None

Submitted by:

[Signature]

H. Gann
Cartographer
Date: April 17, 1972

Approved:

[Signature]

Albert C. Rauck, Jr.
Chief, Coastal Mapping Section
REVIEW REPORT
SHORELINE
TP-00052

61. GENERAL STATEMENT:
See Summary included with this report for this final Class III map.

62. COMPARISON WITH REGISTERED TOPOGRAPHIC SURVEYS:
Not applicable.

63. COMPARISON WITH MAPS OF OTHER AGENCIES:
A comparison was made with U.S.G.S. quadrangle; Little Creek, Delaware, dated 1956, scale 1:24,000.

64. COMPARISON WITH CONTEMPORARY HYDROGRAPHIC SURVEYS:
No contemporary hydrographic survey was conducted in the area pertaining to this final Class III map.

65. COMPARISON WITH NAUTICAL CHARTS:
A comparison was made with N.O.S. chart 12304, 27th edition, March 28, 1981, 1:80,000 scale.

66. ADEQUACY OF RESULTS AND FUTURE SURVEYS:
This map complies with the project instructions, and requirements of National Standards of Map Accuracy.

Submitted by:
Lowell O. Neterer, Jr.
Final Reviewer
August 24, 1981

Approved for forwarding:
Billy H. Barnes
Chief, Photogrammetric Branch, AMC
GEOGRAPHIC NAMES

FINAL NAME SHEET

PH-6905 (Delaware Bay, Delaware)

TP-00052

Bay Gut
Bombay Hook Island
Cedar Gut
Deepwater Point
Delaware Bay
Donas Landing
Drum Gut
Duck Creek
East West Canal
Flat Gut
Green Creek
Herring Branch
Jenkins Ditch
Joes Hole
Kellys Ditch
Kellys Island
Kent Island
Leipsic River

Little Bombay Hook
Mahon River
Marshall Island
Marshtown Gut
Myrtle Gut
North South Canal
Old Creek
Old Womans Gut
Port Mahon
Shearness Gut
Simons River
Taylor Gut

Approved by:

Charles E. Harrington
Chief Geographer, QA/C3x5
Information of Dissemination of Project Material

PH-6905

Delaware Bay

NATIONAL ARCHIVE/FEDERAL RECORD CENTER

Computer Readout
Control Station Identification Cards
Field Edit Ozalids
Field Photographs
NOAA Form 76-41 (Descriptive Report Control Record)

Project Diagrams
Plot Report

Bureau Archives

Descriptive Report
Registered Maps

Reproduction Division

8x Reduction Negative of Each Maps

Office of Staff Geographer
Geographer Names Standard
The following objects HAVE NOT been inspected from seaward to determine their value as landmarks.

<table>
<thead>
<tr>
<th>Charting Name</th>
<th>Description</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Office</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delaware Bay</td>
<td>(West Side)</td>
<td>39 11</td>
<td>04 25</td>
<td>03 17</td>
<td>69E(C)-2935</td>
</tr>
<tr>
<td></td>
<td>Mahon River Light</td>
<td>39 11</td>
<td>131 75 24</td>
<td>076 23 Oct., 69</td>
<td></td>
</tr>
</tbody>
</table>

Only lights listed in 1981 Light List are listed.

Compilation by A. L. Shands
Checked by L. O. Neterer
PHOTOGRAMMETRIC FIELD POSITIONS ARE DEPENDENT ON PHOTOGRAPHAN

II. FIELD POSITION DETERMINED OR VERIFIED

74/JL (F2-71-75)
EXAMPLE: 74/JL (F2-71-75)

1. Field Station, Rec.
 EXAMPLE: F2-71-75

II. FIELD POSITION DETERMINED OR VERIFIED

1. Field Station, Rec.

EXAMPLE: F2-71-75

Verify positions entirely upon ground survey methods.

FIELD POSITIONS ARE DETERMINED BY FIELD OBSERVER

EXAMPLE: F2-6-75

4. Field positions require entry of method of
 location and date of field work.

1. OFFICE IDENTIFIED AND LOCATED OBJECTS

ACTIVITIES

REPRESENTATIVE

QUALITY CONTROL AND REVIEW GROUP

REVIEWER

CARDMASTER

OFFICE ACTIVITY REPRESENTATIVE

FIELD ACTIVITY REPRESENTATIVE

OTHER (Specify)

POSITION DETERMINED AND/or VERIFIED

OBJECTS INSPECTED FROM SEAMARKS

NAME

TYPE OF ACTION

RESponsible PERSONAL

INSTRUCTIONS FOR ENTRIES UNDER METHOD AND DATE OF LOCATION
<table>
<thead>
<tr>
<th>CHARTING NAME</th>
<th>DESCRIPTION</th>
<th>LATITUDE</th>
<th>LONGITUDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TANK</td>
<td>East of four (not in place at time of 1969 photography)</td>
<td>75 25.8</td>
<td>39 10.5</td>
</tr>
</tbody>
</table>
By photogrammetric methods, entire or in part, upon control established.

Photogrammetric Field Positions are determined by field observer.

- Field Positions are determined by field observer.

Example: P-7.6-7.

Enter Y-V, Z and date.

Example: Y-V, Z, and date.

Example: 7.6-7.

Verifiable visually upon photograph.

Verifiable visually upon photograph.

Example: 7.6-7.

Enter Y, Z, and date.

Example: Y, Z, and date.

Example: P-7.6-7.

Located and date of field work.

Example: P-7.6-7.

Located and date of field work.

Located and date of field work.
INSTRUCTIONS
A basic hydrographic or topographic survey supersedes all information of like nature on the uncorrected chart.
1. Letter all information.
2. In "Remarks" column cross out words that do not apply.
3. Give reasons for deviations, if any, from recommendations made under "Comparison with Charts" in the Review.

<table>
<thead>
<tr>
<th>CHART</th>
<th>DATE</th>
<th>CARTOGRAPHER</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Full Part Before After Verification Review Inspection Signed Via Drawing No.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Full Part Before After Verification Review Inspection Signed Via Drawing No.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Full Part Before After Verification Review Inspection Signed Via Drawing No.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Full Part Before After Verification Review Inspection Signed Via Drawing No.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Full Part Before After Verification Review Inspection Signed Via Drawing No.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Full Part Before After Verification Review Inspection Signed Via Drawing No.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Full Part Before After Verification Review Inspection Signed Via Drawing No.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Full Part Before After Verification Review Inspection Signed Via Drawing No.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Full Part Before After Verification Review Inspection Signed Via Drawing No.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Full Part Before After Verification Review Inspection Signed Via Drawing No.</td>
</tr>
</tbody>
</table>