DESCRIPTIVE REPORT

THIS MAP EDITION WILL NOT BE FIELD EDITED

TP-00073 1

Job No.
PH-6906

Map Classification
CLASS III FINAL

Type of Survey
SHORELINE

LOCALITY

State
ALASKA

General Locality
CONTROLLER BAY

Locality
MARTINS ISLANDS

1969 TO 19

REGISTERED IN ARCHIVES

DATE

NOAA FORM 76-35
(6-80)
U.S. DEPARTMENT OF COMMERCE
NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION
NATIONAL OCEAN SURVEY
DESCRIPTIVE REPORT - DATA RECORD

PHOTOMETRIC OFFICE
Coastal Mapping Unit, Atlantic Marine Ctr.
Norfolk, VA

OFFICER-IN-CHARGE
A. Y. Bryson

I. INSTRUCTIONS DATED

<table>
<thead>
<tr>
<th>1. OFFICE</th>
<th>2. FIELD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerotriangulation</td>
<td>September 21, 1970</td>
</tr>
<tr>
<td>Compilation</td>
<td>November 20, 1970</td>
</tr>
<tr>
<td>Memo</td>
<td>April 10, 1984</td>
</tr>
<tr>
<td>Field</td>
<td>May 29, 1969</td>
</tr>
</tbody>
</table>

II. DATUMS

<table>
<thead>
<tr>
<th>1. HORIZONTAL:</th>
<th>XX 1927 NORTH AMERICAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. VERTICAL:</td>
<td>XX MEAN HIGH-WATER</td>
</tr>
<tr>
<td>3. MAP PROJECTION:</td>
<td>Polyconic</td>
</tr>
<tr>
<td>4. GRID(S):</td>
<td>State: Alaska Zone: 3</td>
</tr>
</tbody>
</table>

III. HISTORY OF OFFICE OPERATIONS

<table>
<thead>
<tr>
<th>OPERATIONS</th>
<th>NAME</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. AEROTRIANGULATION METHOD: Analytic LANDMARKS AND AIDS BY</td>
<td>I Saperstein</td>
<td>Feb 1971</td>
</tr>
<tr>
<td></td>
<td>H Eichert</td>
<td>Feb 1971</td>
</tr>
<tr>
<td>2. CONTROL AND BRIDGE POINTS METHOD: Corodamat PLOTTED BY</td>
<td>I Saperstein</td>
<td>Feb 1971</td>
</tr>
<tr>
<td></td>
<td>H Eichert</td>
<td>Feb 1971</td>
</tr>
<tr>
<td>3. STEREOSCOPIC INSTRUMENT COMPI lATION PLANIMETRY BY Checked by</td>
<td>A Shands</td>
<td>Feb 1971</td>
</tr>
<tr>
<td></td>
<td>R White</td>
<td>Feb 1971</td>
</tr>
<tr>
<td>4. MANUSCRIPT DELINEATION PLANIMETRY BY Checked by</td>
<td>L Graves</td>
<td>March 1971</td>
</tr>
<tr>
<td></td>
<td>Checked by</td>
<td>N/A</td>
</tr>
<tr>
<td>5. OFFICE INSPECTION PRIOR TO FIELD EDIT BY</td>
<td>A Shands</td>
<td>March 1971</td>
</tr>
<tr>
<td>6. APPLICATION OF FIELD EDIT DATA</td>
<td>N/A</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>N/A</td>
<td>--</td>
</tr>
<tr>
<td>7. COMPILATION SECTION REVIEW Class III BY</td>
<td>F Mauldin</td>
<td>Feb 1984</td>
</tr>
<tr>
<td>8. FINAL REVIEW Class III</td>
<td>L. O. Neterer Jr</td>
<td>July 1984</td>
</tr>
<tr>
<td>9. DATA FORWARD TO PHOTOMETRIC BRANCH</td>
<td>L. O. Neterer Jr</td>
<td>SEP 1984</td>
</tr>
<tr>
<td>10. DATA EXAMINED IN PHOTOMETRIC BRANCH</td>
<td>P. Hawkins</td>
<td>DEC 1984</td>
</tr>
<tr>
<td>11. MAP REGISTERED - COASTAL SURVEY SECTION</td>
<td>R. S. Kornspan</td>
<td>FEB 1985</td>
</tr>
</tbody>
</table>
1. COMPILATION PHOTOGRAPHY

<table>
<thead>
<tr>
<th>NUMBER AND TYPE</th>
<th>DATE</th>
<th>TIME</th>
<th>SCALE</th>
<th>STAGE OF TIDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>69 E(c) 2178-2179</td>
<td>Aug 25, 1969</td>
<td>10:38</td>
<td>1:30,000</td>
<td>7.5 ft above MLLW</td>
</tr>
<tr>
<td>69 E(c) 2182-2185</td>
<td>Aug 25, 1969</td>
<td>10:48</td>
<td>1:30,000</td>
<td>7.7 ft above MLLW</td>
</tr>
<tr>
<td>70 E(c) 7039</td>
<td>Jul 20, 1970</td>
<td>9:00</td>
<td>1:30,000</td>
<td>2.2 ft below MLLW</td>
</tr>
</tbody>
</table>

REMARKS
mean tide range = 7.7 ft

2. SOURCE OF MEAN HIGH-WATER LINE:

The mean high water line was compiled from the above listed photography.

3. SOURCE OF MEAN LOWER LOW-WATER LINE:

There was no mean lower tow water line compiled.

4. CONTEMPORARY HYDROGRAPHIC SURVEYS (List only those surveys that are sources for photogrammetric survey information.)

<table>
<thead>
<tr>
<th>SURVEY NUMBER</th>
<th>DATE(S)</th>
<th>SURVEY COPY USED</th>
<th>SURVEY NUMBER</th>
<th>DATE(S)</th>
<th>SURVEY COPY USED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. FINAL JUNCTIONS *

<table>
<thead>
<tr>
<th>NORTH (Scale</th>
<th>EAST</th>
<th>SOUTH</th>
<th>WEST (Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP-00072, 1:20,000</td>
<td>TP-00074</td>
<td>No Survey</td>
<td>TP-00072 1:20,000</td>
</tr>
</tbody>
</table>

*TP-00073 is an inset (scale 1:10,000) which lies within sheet TP-00072 (scale 1:20,000) in the southeast quadrant.
HISTORY OF FIELD OPERATIONS

1. **FIELD INSPECTION OPERATION**
 - **OPERATION**
 - **NAME**
 - **DATE**
 - **CHIEF OF FIELD PARTY**
 - Recovered By: R. Melby
 - Established By: L. Riggers
 - Pre-Marked or Identified By: L. Riggers
 - May-June '70
 - **HORIZONTAL CONTROL**
 - Recovered By: L. Riggers
 - Established By: L. Riggers
 - Pre-Marked or Identified By: L. Riggers
 - May-June '70
 - **VERTICAL CONTROL**
 - Recovered By: NONE
 - Established By: NONE
 - Pre-Marked or Identified By: NONE
 - NONE
 - **LANDMARKS AND AIDS TO NAVIGATION**
 - Recovered (Triangulation Stations) By: NONE
 - Located (Field Methods) By: NONE
 - Identified By: NONE
 - NONE
 - **TYPE OF INVESTIGATION**
 - Complete: NO
 - Specific Names Only: NO
 - None: NO
 - **PHOTO INSPECTION**
 - Clarification of Details By: NONE
 - **BOUNDARIES AND LIMITS**
 - Surveyed or Identified By: NONE

II. **SOURCE DATA**

1. **HORIZONTAL CONTROL IDENTIFIED**
 - **PHOTO NUMBER**
 - **STATION NAME**
 - 70 M.308
 - Palm, 1969
2. **VERTICAL CONTROL IDENTIFIED**
 - **PHOTO NUMBER**
 - **STATION DESIGNATION**
 - NONE

3. **PHOTO NUMBERS (Clarification of details)**
 - NONE

4. **LANDMARKS AND AIDS TO NAVIGATION IDENTIFIED**
 - NONE

5. **GEOGRAPHIC NAMES**
 - Report: NO
 - None: NO

6. **BOUNDARY AND LIMITS**
 - Report: NO
 - None: NO

7. **SUPPLEMENTAL MAPS AND PLANS**
 - NONE

8. **OTHER FIELD RECORDS**
 - **Sketch books, etc. DO NOT list data submitted to the Geodesy Division**
 - 1 Form 152
 - 1 Field Inspection Report
RECORD OF SURVEY USE

I. MANUSCRIPT COPIES

<table>
<thead>
<tr>
<th>Compilation Stage</th>
<th>Date</th>
<th>Remarks</th>
<th>Marine Charts</th>
<th>Hydro Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compilation Complete</td>
<td>March 1971</td>
<td>Class III Manuscript superseded</td>
<td>March 1971</td>
<td></td>
</tr>
<tr>
<td>Final Review Class III</td>
<td>July 1984</td>
<td>Final Class III map</td>
<td>NOV 30 1984</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>CHART LETTER NUMBER ASSIGNED</th>
<th>DATE FORWARDED</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>Aid to be charted</td>
</tr>
</tbody>
</table>

II. LANDMARKS AND AIDS TO NAVIGATION

1. REPORTS TO MARINE CHART DIVISION, NAUTICAL DATA BRANCH

III. FEDERAL RECORDS CENTER DATA

1. ☑ BRIDGING PHOTOGRAPhES; ☑ DUPLICATE BRIDGING REPORTS; ☑ COMPUTER READOUTS.
2. ☐ CONTROL STATION IDENTIFICATION CARDS; ☐ FORM NOS SUBMITTED BY FIELD PARTIES.
3. ☐ SOURCE DATA (except for Geographic Names Report) AS LISTED IN SECTION II, NOAA FORM 76-36C.

IV. SURVEY EDITIONS

(If this section shall be completed each time a new map edition is registered)

<table>
<thead>
<tr>
<th>EDITION</th>
<th>SURVEY NUMBER</th>
<th>JOB NUMBER</th>
<th>TYPE OF SURVEY</th>
<th>MAP CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SECOND</td>
<td></td>
<td></td>
<td>☐ REVISED ☐ RESURVEY</td>
<td>II, III, IV, V, ☐ FINAL</td>
</tr>
<tr>
<td>THIRD</td>
<td></td>
<td></td>
<td>☐ REVISED ☐ RESURVEY</td>
<td>II, III, IV, V, ☐ FINAL</td>
</tr>
<tr>
<td>FOURTH</td>
<td></td>
<td></td>
<td>☐ REVISED ☐ RESURVEY</td>
<td>II, III, IV, V, ☐ FINAL</td>
</tr>
</tbody>
</table>

NOAA FORM 76-36D
This 1:10,000 scale map is one of fourteen maps that comprises project PH-6906, Controller Bay, Alaska.

The project encompasses Controller Bay from Kayak Island, latitude 59°45'00" and the east end of Controller Bay, longitude 144°00'00" northwest to the Copper River, latitude 60°20'00", longitude 145°00'00".

In accordance with the memo dated April 10, 1984, all maps will be registered as Class III.

Field work prior to compilation was accomplished during May thru June 1969 and May thru June 1970. It consisted of the identification of horizontal control by both photo-identification and premarking methods.

Photographic coverage was provided in August 1969 for aerotriangulation using color film with the "E" camera (focal length 152.71 millimeters) and infrared photography taken with the "K" camera (focal length of 151.77 millimeters). Both sets of photography was 1:30,000 scale. The infrared photography was not used for bridging or compilation. Black-and-white photographs taken during July 1970 using the "M" camera (focal length 88.20 millimeters) at 1:60,000 scale were used for bridging.

Analytic aerotriangulation was performed in February 1971 at the Washington Science Center.

Compilation was performed at the Atlantic Marine Center in March 1971 from office interpretation of the color photographs.

Final review was performed at the Atlantic Marine Center in June 1984. Without any field verification, this map is required to be registered as a Final Class III map.
FIELD INSPECTION REPORT
Project PH-6906 (OPR-487)
Shoreline Mapping
Gulf of Alaska, Cape Suckling to Copper River Flats
May - June 1970
Sheets TP - 00071 through TP - 00085

Purpose: To panel horizontal control stations in advance of aerial photography.

Horizontal Control: (Geodetic)

The triangulation stations were recovered in the designated areas. Additional control was established in areas not covered by existing triangulation. Second order methods were used in determining the new monumented stations. Distances were determined by the Model MRA 3-Mk2 Tellurometer. Seven lines were measured. On two separate occasions, the tellurometers failed to measure the line between HAM and GRAVIE. Moving the instruments to an eccentric station did not resolve the problem. Apparently some type of radio interference exists between the two stations. However, the lines measured from these two stations to other points were satisfactory.

Field computations were based on the positions furnished by the Chief, Triangulation Branch, dated May 5, 1969, on the "Anchorage-Prince William Sound Area, Alaska; Free Adjustment - 1964-1965 Surveys, Supplemental Stations". The field work by the Ship FAIRWEATHER in 1969 was also based on the same adjustment. A letter dated May 20, 1970, from Chief, Triangulation Branch to Director, Pacific Marine Center, indicates a final adjustment has been completed. The computations and adjustments of the 1969 and 1970 field seasons work, based on stations CASTLE, 1965; FOX, 1903; HAM, 1959; and BRUCE 2, 1965, could be finalized. This would combine all of the paneled stations on the same interrelated adjustment.

Horizontal Control (Photogrammetry):

All the stations were paneled with the white, polyethylene plastic material at the prescribed dimensions.

In the 1:60,000 scale flight line, Station KWIN 1970 was photo-paneled in addition to the five required stations. This station is at the Southeast end of Controller Bay. Two of the 1:10,000 scale panels on Wingham Island are along the east shore of the storm high water line (driftwood and debris) and the base of the brushy bluffs.
Station TIPS, 1969 was photo-identified. The 1969 center panel was still in place, although the rays were torn and grown over with grass. All panels for the 1970 season photography were in place by 10 June 1970. Form 152, "Control Station Identification", was submitted for each station paneled.

A helicopter was used to furnish transportation of personnel and equipment. This mode of transportation provided ready access to the remote areas and permitted the advantage of utilizing the favorable conditions of the ever-changing weather patterns.

Respectfully submitted,

[Signature]

Robert B. Melby
Surveying Technician, USC&GS
Pacific Marine Center
Photogrammetric Plot Report
Job PH-6906
Controller Bay, Alaska
February 11, 1971

21. Area Covered

The area of the project covers Controller Bay, Copper River Flats and Kayak Island, Alaska, and consists of eleven (11) 1:10,000 scale sheets TP-00073 thru TP-00081, TP-00083, TP-00084, and three (3) 1:20,000 scale sheets TP-00071, TP-00072 and TP-00085. It will be noted that photographs covering TP-00082 were not bridged due to the fact that station BRUCE 2, 1965 was outside the limits of photography, and could not be used for a terminal for Strip 1.

22. Method

Strips 1, 2, 3, 5, 6, 7, 8, 9, and 14 were bridged by analytic aerotriangulation methods. Compilation points were located for strips 4, 10, 11, 12, and 13 from the applicable bridged strips, so that the models can be set on the B-8.

Compilation points were not located on photos 69-E(C)-2141 and 2142 on strip 11. It was impossible to find common points between the 1:60,000 scale pan. and 1:30,000 scale color photography in the water and shoal area of the above model. When the adjoining models are set on the B-8, it may be possible for the compiler to drop points on the above photos to control this one model.

Photographs covering the Bering River in the eastern part of TP-00075 was not bridged due to lack of control.

The attached sketch of the strips bridged shows the placement of triangulation used in the final strip adjustments.

The following is a listing of closures to control in feet:
<table>
<thead>
<tr>
<th>Location</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. P. KWIN, 1970</td>
<td>-2.4</td>
<td>-3.5</td>
</tr>
<tr>
<td>S. P. KANAK, 1969</td>
<td>+6.6</td>
<td>+7.3</td>
</tr>
<tr>
<td>PALM, 1969</td>
<td>-2.0</td>
<td>+0.3</td>
</tr>
<tr>
<td>COTTONWOOD, 1969</td>
<td>-4.0</td>
<td>-10.2</td>
</tr>
<tr>
<td>CASTLE, 1965</td>
<td>+2.5</td>
<td>+7.0</td>
</tr>
<tr>
<td>ELI, 1969</td>
<td>+0.8</td>
<td>-0.7</td>
</tr>
<tr>
<td>GRAVIE, 1969</td>
<td>-1.7</td>
<td>+1.7</td>
</tr>
<tr>
<td>PYRA, 1969</td>
<td>+1.3</td>
<td>-1.6</td>
</tr>
<tr>
<td>S.P. TIPS, 1969</td>
<td>0.0</td>
<td>-0.5</td>
</tr>
<tr>
<td>ROCKER, 1969</td>
<td>+1.3</td>
<td>-1.2</td>
</tr>
<tr>
<td>WING, 1903</td>
<td>+0.2</td>
<td>+0.1</td>
</tr>
<tr>
<td>S. P. HAM, 1959</td>
<td>-0.3</td>
<td>-0.3</td>
</tr>
<tr>
<td>S. P. HARRIS, 1970</td>
<td>+0.2</td>
<td>+0.2</td>
</tr>
<tr>
<td>S. P. FITZ, 1970</td>
<td>-0.1</td>
<td>-0.1</td>
</tr>
<tr>
<td>S. P. INGA, 1969</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

(+0.5 -1.8 Strip 14)

Bridging points on Alaska Zone 3 plane coordinate system have been plotted by Coradimat.

23. Adequacy of Control

The number of horizontal control stations in Controller Bay and Copper River Flats was minimal. Strips 1, 5, and 7 were bridged using triangulation stations only as horizontal control in the adjustments. The other bridged strips were adjusted using triangulation stations and tie points as control. Two strips (8 and 9) were bridged using the tie points only.

At the time we were ready to adjust our photogrammetric strips in the northern part of the project, we discovered that a readjustment of control in the project area was pending in the Division of Geodesy as a result of geodetic work performed subsequent to the Alaskan earthquake of 1964. At our request, they performed the adjustment so we could make our delivery deadline for compilation. A partial list was received by us and used. The shift in datum was about 30 feet.

We were also informed by Geodesy that a shift of about the same magnitude would apply to the area in the southern part of the project which had already been bridged and compiled. This, of course, required a photogrammetric readjustment of the bridging in that area.
When this work was completed, we were furnished with a complete list of readjusted positions covering the project area. It was then discovered that there were some discrepancies in position between this list and the partial list previously submitted. The largest discrepancies were in positions for stations COTTONWOOD, 1965 and KWIN, 1970. Geodesy has stated that the position for COTTONWOOD is weak, there being a poor triangle closure.

No further photogrammetric adjustment was made to the strips already bridged, notably strip 1, in order to meet deadlines. Points taken from strip 1 will necessarily be slightly out of position also. The differences of position between the Preliminary Office Computations (partial list) and the final positions for station COTTONWOOD are \(x - 4.8 \) ft., \(y + 2.2 \) ft. and KWIN \(x + 2.4 \) ft., \(y + 0.2 \) ft.

It is believed, however, the maps will meet the standards of map accuracy.

24. Supplemental Data

Vertical control needed for the adjustment was taken from U.S.G.S. Quadrangles.

25. Photography

The definition and quality of the RC-9 "M" and RC-8 "E" photography was poor and good respectively. Coverage was adequate to compile all sheets except those mentioned under Item 21 and 22.

The following is a listing of photographs for each strip:

Strip 1 -- 70-M-301 thru 315
Strip 2 -- 70-M-289 thru 294
Strip 3 -- 70-M-233 thru 238
Strip 4 -- 70-E(C)-7030 thru 7039
Strip 5 -- 69-E(C)-1396 thru 1411
Strip 6 -- 69-E(C)-1378 thru 1393
Strip 7 -- 70-E(C)-7161 thru 7169
Strip 8 -- 69-E(C)-2113 thru 2119
Strip 9 -- 69-E(C)-2152 thru 2161
Strip 10 -- 69-E(C)-2123 thru 2131
Strip 11 -- 69-E(C)-2134 thru 2144
Strip 12 -- 69-E(C)-2182 thru 2185
Strip 13 -- 69-E(C)-2178 thru 2179
Strip 14 -- 69-E(C)-2167 thru 2174

Strips 1, 2, and 3 -- 1:60,000 scale photographs
Strips 4, 5, 6, and 8 thru 14 -- 1:30,000 scale photographs
Strip 7 -- 1:10,000 scale photographs

Ratio prints have been ordered to facilitate compilation, and for photo-hydro support.

Respectfully submitted,

[Signature]
I. V. Saperstein

Approved and forwarded,

[Signature]
Henry F. Reichert
Chief, Aerotriangulation Section
<table>
<thead>
<tr>
<th>STATION NAME</th>
<th>SOURCE OF INFORMATION (Index)</th>
<th>COORDINATES IN FEET</th>
<th>GEOGRAPHIC POSITION</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>TUCK, 1903</td>
<td>G.P. G145.11</td>
<td>x=</td>
<td>Φ 60° 11' 35.88079"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>y=</td>
<td>Λ 144° 36' 35.84620"</td>
<td></td>
</tr>
<tr>
<td>FOX, 1903</td>
<td>"</td>
<td>x=</td>
<td>Φ 60° 09' 58.11896"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>y=</td>
<td>Λ 144° 35' 59.52873"</td>
<td></td>
</tr>
<tr>
<td>PALM, 1903</td>
<td>"</td>
<td>x=</td>
<td>Φ 60° 10' 57.50975"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>y=</td>
<td>Λ 144° 33' 15.39215"</td>
<td></td>
</tr>
<tr>
<td>IRON PIN ON LONE ROCK, 1970</td>
<td>"</td>
<td>x=</td>
<td>Φ 60° 10' 43.28420"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>y=</td>
<td>Λ 144° 35' 02.39459"</td>
<td></td>
</tr>
<tr>
<td>FOXY (USGS) 1959</td>
<td>"</td>
<td>x=</td>
<td>Φ 60° 09' 57.63555"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>y=</td>
<td>Λ 144° 36' 00.52699"</td>
<td></td>
</tr>
</tbody>
</table>

COMPUTED BY R. R. White DATE 2/1/71
COMPUTATION CHECKED BY B. H. Barnes DATE 2/1/71
LISTED BY DATE
HAND PLOTTING BY DATE

SUPERSEDES NOAA FORM 76-41, 2-71 EDITION WHICH IS OBSOLETE.
31 - **DELINEATION**

Delineation was by the B-8 stereoplotting instrument. Detail was applied in a few instances by graphic method for the marsh and mud of Sutfuk Lagoon. The Martins Islands area was compiled graphically.

There was no field inspection prior to compilation.

32 - **CONTROL**

The horizontal control was adequate. See Photogrammetric Plot Report dated February 11, 1971.

33 - **SUPPLEMENTAL DATA**

None.

34 - **CONTOURS AND DRAINAGE**

Contours are not applicable. Drainage was delineated from office interpretation of the photographs.

35 - **SHORELINE AND ALONGSHORE DETAILS**

36 - **OFFSHORE DETAILS**

Offshore details were compiled from office interpretation of the photographs.

37 - **LANDMARKS AND AIDS**

Appropriate copies of 76-40 forms are included with this report.

38 - **CONTROL FOR FUTURE SURVEYS**

None.

39 - **JUNCTIONS**

See Form 76-36b, item #5 of this report.

40 - **HORIZONTAL AND VERTICAL ACCURACY**

See item #32.
46 - COMPARISON WITH EXISTING MAPS

47 - COMPARISON WITH NAUTICAL CHARTS

A comparison was made with NOS Chart: 8513, scale 1:100,000, 9th edition, dated August 9, 1969.

ITEMS TO BE APPLIED TO NAUTICAL CHARTS IMMEDIATELY

None.

ITEMS TO BE CARRIED FORWARD

None.

Submitted by,

L. L. Graves
Cartographic Technician
March 8, 1971

Approved by,

James L. Byrd, Jr.
Chief, Coastal Mapping Unit
61. GENERAL STATEMENT

See Summary included with this report.

62. COMPARISON WITH REGISTERED TOPOGRAPHIC SURVEYS

Not applicable.

63. COMPARISON WITH MAPS OF OTHER AGENCIES

64. COMPARISON WITH CONTEMPORARY HYDROGRAPHIC SURVEYS

There is no contemporary hydrographic survey within the limits of this map.

65. COMPARISON WITH NAUTICAL CHARTS

A comparison was made with NOS Chart: 16723, dated December 27, 1980, 13th edition, scale 1:100,000.

66. ADEQUACY OF RESULTS AND FUTURE SURVEYS

The horizontal control meets accuracy requirements insuring this map complies with the project instructions and meets the prerequisite for National Standards of Map Accuracy.

Submitted by,

Lowell O. Neterer, Jr.
Final Reviewer

Approved for forwarding,

Billy H. Barnes
Chief, Photogrammetric Section, AMC

Approved,

Chief, Photogrammetric Section, Rockville

Ronald K. Brewer
Chief, Photogrammetry Branch
Rockville
March 22, 1984

GEOGRAPHIC NAMES
FINAL NAME SHEET
PH - 6906 (Controller Bay, Alaska)
TP - 00073

Clear Creek
Fox Island
Gulf of Alaska
Katalla
Katalla Bay
Lake Kahultla
Martin Islands
Mirror Slough
Palm Point
Point Martin
Softuk Bar
Softuk Lagoon
Whale Island
Windy Point

Approved by;
Charles E. Harrington
Chief Geographer
Nautical Charting Division
NOAA FORM 76-40

U.S. DEPARTMENT OF COMMERCE

NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION

NONFLOATING AIDS OR LANDMARKS FOR CHARTS

<table>
<thead>
<tr>
<th>AX</th>
<th>TO BE CHARTED</th>
<th>REPORTING UNIT</th>
<th>STATE</th>
<th>LOCALITY</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Coastal Mapping Unit</td>
<td>Alaska</td>
<td>Controller Bay</td>
<td>3/1/82</td>
</tr>
</tbody>
</table>

The following objects **HAVE** been inspected from seaward to determine their value as landmarks.

- **GPR PROJECT NO.** 487
- **JOB NUMBER** PH-6906
- **SURVEY NUMBER** TP-00073
- **DATUM** NA 1927

DESCRIPTION

<table>
<thead>
<tr>
<th>CHARTING NAME</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIGHT</td>
<td>Martin Islands Light *</td>
</tr>
</tbody>
</table>

* New position for Light established in 1971, Not visible on 1969 Photos
Version based entirely upon ground survey methods.

Field positions are determined by field observer.

EXAMPLE: P-2-6-L

A. Field positions are entered on method of
date of field work.

EXAMPLE: 7-5

4. Intersection
3. Intersection
2. Traverse
1. Triangulation
V - Vertical
L - Location
F - Field
P - Photogrammetric

Enter the applicable data by symbols as follows:

1. NW position determined as verified

EXAMPLE: 75E(5)6042

Position identified and located subject, day, and year of the photograph used to

Enter the number and date (including month,

Office

Field

74L(C)9286

B. Photogrammetric field positions required

EXAMPLE: P-B-8-V

A map used to locate or identify the object.

Date of field work and number of the photo.

Other (Specify)
Geodetic Party
Hydrographic Party
Photo Field Party

OBSERVER
OFFICE

Name

REPRESENTATIVE

QUALITY CONTROL AND REVIEW GROUP

ACTIVITIES

PILOT ACTIVITY REPRESENTATIVE

OTHER (Specify)

RESPONSIBLE PERSONAL

INSTRUCTIONS FOR ENTRIES UNDER METHOD AND DATE OF LOCATION

COMPLAINT PHOTOGRAMMETRIC INFORMATION NO. 64

FORMS ORGANIZED BY QUALITY CONTROL

LOCATION DETERMINED AND VERIFIED

OBJECTS INSPECTED FROM SEA AND

ACTIVITIES

AND REVIEW GROUP AND FINAL REVIEW

REPRESENTATIVE

QUALITY CONTROL AND REVIEW GROUP

REPRESENTA
Nonfloating Aids or Landmarks for Charts

On 3/1/84, the following objects have been inspected from seaward to determine their value as landmarks:

Reporting Unit: AMC, Norfolk, VA

State: Alaska

Locality: Controller Bay

Opr. Project No.: 487

Job Number: PH-6906

Survey Number: TP-00073

Datum: N.A. 1927

Charting Name: NONE

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>LATITUDE</th>
<th>LONGITUDE</th>
<th>OFFICE</th>
<th>FIELD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Method and Date of Location

(See Instructions on Reverse Side)

Charts Affected

...
Field Positions

Field positions are determined by field operation.

Example: F-6-7-5

- Location and date of field work.

Field Positions

Field positions are determined by field operation.

Example: F-7-5-6

- Location and date of field work.

Position Verifiable Visually on Photograph

Position verifiable visually on photograph.

Example: V-VS.

Triangulation Station Recreated

Triangulation station recreated.

Example: T-7-5-6

Identified

Identified

Example: I-2-5-7

Field Office

Field office.

Example: F-7-5-6

Geodetic Party

Geodetic party.

Example: G-P-6-1-7

Photographic Party

Photographic party.

Example: P-7-5-6

Others (Specify)

Others (specify).

Example: O-S-6-1-7

Activities

<table>
<thead>
<tr>
<th>Activity</th>
<th>Representative</th>
<th>Reviewer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office Activity Representative</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field Activity Representative</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other (Specify)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Form Instructions

Forms organized by Quality Control.

<table>
<thead>
<tr>
<th>Field Office Determined/Verified</th>
<th>Field Positions Determined/Verified</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objects inspected from Seaward</td>
<td>Objects inspected from Seaward</td>
</tr>
</tbody>
</table>

Instructions for Entries Under Method and Date of Location

- Name: [redacted]
- Responsible Personnel: [redacted]
- Type of Action: [redacted]
- Other (Specify): [redacted]
- Geodetic Party: [redacted]
- Photographic Party: [redacted]
- Other Group and Review Group: [redacted]

Notes

- Instructions for entries under method and date of location.
NAUTICAL CHART DIVISION

RECORD OF APPLICATION TO CHARTS

FILE WITH DESCRIPTIVE REPORT OF SURVEY NO.

INSTRUCTIONS
A basic hydrographic or topographic survey supersedes all information of like nature on the uncorrected chart.
1. Letter all information.
2. In "Remarks" column cross out words that do not apply.
3. Give reasons for deviations, if any, from recommendations made under "Comparison with Charts" in the Revi

<table>
<thead>
<tr>
<th>CHART</th>
<th>DATE</th>
<th>CARTOGRAPHER</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Full Part Before After Verification Review Inspection Signed Via Drawing No.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Full Part Before After Verification Review Inspection Signed Via Drawing No.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Full Part Before After Verification Review Inspection Signed Via Drawing No.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Full Part Before After Verification Review Inspection Signed Via Drawing No.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Full Part Before After Verification Review Inspection Signed Via Drawing No.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Full Part Before After Verification Review Inspection Signed Via Drawing No.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Full Part Before After Verification Review Inspection Signed Via Drawing No.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Full Part Before After Verification Review Inspection Signed Via Drawing No.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Full Part Before After Verification Review Inspection Signed Via Drawing No.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Full Part Before After Verification Review Inspection Signed Via Drawing No.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Full Part Before After Verification Review Inspection Signed Via Drawing No.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Full Part Before After Verification Review Inspection Signed Via Drawing No.</td>
</tr>
</tbody>
</table>