DESCRIPTIVE REPORT

Map Edition Will Not Be Field Edited

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TP-01070</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Job No.</th>
<th>CN-8004</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Map Classification</th>
<th>CLASS III FINAL</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Type of Survey</th>
<th>SHORELINE</th>
</tr>
</thead>
</table>

LOCALITY

<table>
<thead>
<tr>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEW YORK</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>General Locality</th>
<th>LAKE ONTARIO</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Rochester to Oswego</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Locality</th>
<th>Sodus</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980 TO 19</td>
</tr>
</tbody>
</table>

Registry in Archives
DESCRIPTIVE REPORT - DATA RECORD

PHOTOGRAMMETRIC OFFICE
Atlantic Marine Center
Coastal Mapping Division, Norfolk, VA

OFFICER-IN-CHARGE
A. Y. Bryson

I. INSTRUCTIONS DATED

<table>
<thead>
<tr>
<th>1. OFFICE</th>
<th>2. FIELD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerotriangulation</td>
<td>March 3, 1981</td>
</tr>
<tr>
<td>Compilation</td>
<td>July 7, 1982</td>
</tr>
<tr>
<td>Control</td>
<td>October 17, 1980</td>
</tr>
</tbody>
</table>

II. DATUMS

1. **HORIZONTAL:**
 - 1927 NORTH AMERICAN

2. **VERTICAL:**
 - Mean High-Water
 - Mean Low-Water
 - Mean Lower Low-Water
 - Mean Sea Level

3. **MAP PROJECTION:**
 - Transverse Mercator

III. HISTORY OF OFFICE OPERATIONS

<table>
<thead>
<tr>
<th>OPERATIONS</th>
<th>NAME</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. AEROTRIANGULATION METHOD: Analytic</td>
<td>S. Solbeck</td>
<td>April 1981</td>
</tr>
<tr>
<td>2. CONTROL AND BRIDGE POINTS METHOD: Coromot</td>
<td>S. Solbeck</td>
<td>April 1981</td>
</tr>
<tr>
<td>4. MANUSCRIPT DELINEATION METHOD: Smooth Drafted</td>
<td>R. Kravitz</td>
<td>Nov. 1982</td>
</tr>
<tr>
<td>5. OFFICE INSPECTION PRIOR TO FINAL REVIEW</td>
<td>R. Kravitz</td>
<td>Nov. 1982</td>
</tr>
<tr>
<td>6. APPLICATION OF FIELD EDIT DATA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>7. COMPI LilATION SECTION REVIEW</td>
<td>Class III</td>
<td>R. Kravitz</td>
</tr>
<tr>
<td>9. DATA FORWARDED TO PHOTOGRAMMETRIC BRANCH</td>
<td>L. O. Neterer, Jr.</td>
<td>May 1983</td>
</tr>
<tr>
<td>10. DATA EXAMINED IN PHOTOGRAMMETRIC BRANCH</td>
<td>R. Kelly</td>
<td>May 1983</td>
</tr>
<tr>
<td>11. MAP REGISTERED - COASTAL SURVEY SECTION</td>
<td>D. Woff</td>
<td>Oct 4 1983</td>
</tr>
</tbody>
</table>

NOAA FORM 76-36A SUPERSEDES FORM C&GS 181 SERIES

U.S. G.P.O. 1972-769380/347 REG.#6
1. Compilation Photography

<table>
<thead>
<tr>
<th>Camera(s)</th>
<th>Tide Stage Reference</th>
<th>Type of Photography Legend</th>
<th>Time Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild RC 8E (E = 152.71 mm)</td>
<td>Predicted Tides NA</td>
<td>(C) Color</td>
<td>Eastern 75th</td>
</tr>
<tr>
<td></td>
<td>Reference Station Records NA</td>
<td>(P) Panchromatic</td>
<td>Std. Daylight</td>
</tr>
<tr>
<td></td>
<td>Tide Controlled Photography NA</td>
<td>(I) Infrared</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number and Type</th>
<th>Date</th>
<th>Time</th>
<th>Scale</th>
<th>Stage of Tide</th>
</tr>
</thead>
<tbody>
<tr>
<td>80 E(C) 6525-6528</td>
<td>9/29/80</td>
<td>09:38</td>
<td>1:50,000</td>
<td>*NA</td>
</tr>
</tbody>
</table>

Remarks: *Lake level at the time of photography was 244.80 ft., Lake Ontario low water datum, Rochester gage, or 2.0 ft. above I.G.L.D.

2. Source of Mean High-Water Line:

The term mean high water line is not applicable. The shoreline was delineated from the above listed photography where the water interfaces with the land.

3. Source of Mean Low-Water or Mean Lower Low-Water Line:

Not applicable

4. Contemporary Hydrographic Surveys (List only those surveys that are sources for photogrammetric survey information.)

<table>
<thead>
<tr>
<th>Survey Number</th>
<th>Date(S)</th>
<th>Survey Copy Used</th>
<th>Survey Number</th>
<th>Date(S)</th>
<th>Survey Copy Used</th>
</tr>
</thead>
</table>

5. Final Junctions

<table>
<thead>
<tr>
<th>North</th>
<th>East</th>
<th>South</th>
<th>West</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>TP-01073</td>
<td>None</td>
<td>TP-01069</td>
</tr>
</tbody>
</table>

Remarks: TP-01071 is an insert at 1:10,000 scale which covers Sodus Bay within the boundary of this map.
HISTORY OF FIELD OPERATIONS

<table>
<thead>
<tr>
<th>OPERATION</th>
<th>NAME</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. CHIEF OF FIELD PARTY</td>
<td>R. S. Tibbetts</td>
<td>Nov. 1980</td>
</tr>
<tr>
<td>2. HORIZONTAL CONTROL</td>
<td>C. S. Middleton</td>
<td>Nov. 1980</td>
</tr>
<tr>
<td></td>
<td>C. S. Middleton</td>
<td>Nov. 1980</td>
</tr>
<tr>
<td>3. VERTICAL CONTROL</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>4. LANDMARKS AND AIDS TO</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>NAVIGATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. GEOGRAPHIC NAMES</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>INVESTIGATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TYPE OF INVESTIGATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ COMPLETE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ SPECIFIC NAMES ONLY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>☑ NO INVESTIGATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. PHOTO INSPECTION</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>CLARIFICATION OF DETAILS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. BOUNDARIES AND LIMITS</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>SURVEYED OR IDENTIFIED BY</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SOURCE DATA

<table>
<thead>
<tr>
<th>PHOTO NUMBER</th>
<th>STATION NAME</th>
<th>PHOTO NUMBER</th>
<th>STATION DESIGNATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>80 E(C)6527</td>
<td>Sodus (USLS), 1875</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. PHOTO NUMBERS (Clarification of details)

None

4. LANDMARKS AND AIDS TO NAVIGATION IDENTIFIED

None

5. GEOGRAPHIC NAMES: ☑ REPORT ☑ NONE

6. BOUNDARY AND LIMITS: ☑ REPORT ☑ NONE

7. SUPPLEMENTAL MAPS AND PLANS

8. OTHER FIELD RECORDS (Sketch books, etc. DO NOT list data submitted to the Geodetic Division)

1 form 76-53
I. MANUSCRIPT COPIES

<table>
<thead>
<tr>
<th>Compilation</th>
<th>Date</th>
<th>Remarks</th>
<th>Marine Charts</th>
<th>Hydro Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compilation complete</td>
<td>Nov. 1982</td>
<td>Class III Manuscript</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final Review, Class III</td>
<td>Feb. 1983</td>
<td>Final Class III Map</td>
<td>June 16, 83</td>
<td></td>
</tr>
</tbody>
</table>

II. LANDMARKS AND AIDS TO NAVIGATION

1. REPORTS TO MARINE CHART DIVISION, NAUTICAL DATA BRANCH

<table>
<thead>
<tr>
<th>Number</th>
<th>Chart Number Assigned</th>
<th>Date Forwarded</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>June 16, 83</td>
<td>Landmark for charting</td>
</tr>
</tbody>
</table>

III. FEDERAL RECORDS CENTER DATA

1. Bridging Photographs; Duplicate Bridging Report; Computer Readouts; Control Station Identification Cards; Form No. 359 Submitted by Field Parties; Source Data (except for Geographic Names Report) as listed in Section II, NOAA Form 76-36C.

IV. SURVEY EDITIONS

Second Edition
- **Survey Number**: TP - (2)
- **Job Number**: PH -
- **Date of Photography**:
- **Date of Field Edit**:
- **Type of Survey**:
 - REVISED
 - RESURVEY
- **Map Class**: II, III, IV, V, FINAL

Third Edition
- **Survey Number**: TP - (3)
- **Job Number**: PH -
- **Date of Photography**:
- **Date of Field Edit**:
- **Type of Survey**:
 - REVISED
 - RESURVEY
- **Map Class**: II, III, IV, V, FINAL

Fourth Edition
- **Survey Number**: TP - (4)
- **Job Number**: PH -
- **Date of Photography**:
- **Date of Field Edit**:
- **Type of Survey**:
 - REVISED
 - RESURVEY
- **Map Class**: II, III, IV, V, FINAL
SUMMARY TO ACCOMPANY
DESCRIPTIVE REPORT

TP-01070

This 1:20,000 scale shoreline map is one of ten maps of project CM-8004, Lake Ontario, Rochester to Oswego, New York.

This project encompasses the southern shore of Lake Ontario from Rochester longitude 77°30'00" east to Oswego longitude 76°25'00".

No field edit will be performed in accordance with correspondence from the Chief of Photogrammetry dated April 30, 1982.

Field work prior to compilation was accomplished in November 1980. It consisted of the identification of horizontal control by photographic identification methods to meet aerotriangulation requirements.

Photographic coverage was provided in September 1980 for aerotriangulation using color film with the "E" camera at 1:50,000 scale.

Analytic aerotriangulation was performed at the Washington Science Center in April 1981.

Compilation was performed at the Atlantic Marine Center in November 1982 from office interpretation of the 1981 photography.

Final review was performed at the Atlantic Marine Center in February 1983. Without any field verification this map is required to be registered as a Final Class III map.

The original base map and all pertinent data were forwarded to the Washington Science Center for final registration.
1. GENERAL

This report covers the photoidentification of control points as prescribed by project instructions.

The Photo Party (consisting of Party Chief; Robert S. Tibbetts, Surveying Technicians; Stephen V. Pugh and Clifton S. Middleton Jr., and Temporary Surveying Aid; Ron G. Gruce) by general consensus decided that it was in the best interest of the timely completion of the JOB, to work on Veterans' Day, 11/11/80 and the following Saturday, 11/15/80. By doing so, the party avoided a snow storm which struck the area on the evening of 11/16/80 which would have significantly delayed completion of the JOB. The majority of the field operations were performed under adverse weather conditions such as cold, high winds, rain, and snow flurries.

2. HORIZONTAL CONTROL

The following control stations were photoidentified.

Control Point No. 1 SENECA 3 1942. Substitute Stations were previously photoidentified on adjoining JOB CM 8000 and is to be applied in the office.
Control Point No. 1135-2 1135-2 1973. Substitute Point A and Substitute Point B are photoidentified on photo 80EC6537.

Control Point No. 2 ONTARIO WATER TANK 1925. Substitute Station 2A and Substitute Station 2B are photoidentified on photo 80EC6531.

Control Point No. 3 SODUS 1875 (USLS). Substitute Station 3A, Substitute Station 3B, and the center of a Generator Building are photoidentified on photo 80EC6522.

Control Point No. 4 Huron 1943. Substitute Station 4A and Substitute Station 4B are photoidentified on photo 80EC6506.

Control Point No. 5 FAIRHAVEN STANDPIPE 1943. Substitute Station 5A and Substitute Station 5B are photoidentified on photo 80EC6509.

Control Point No. 6 TICE 1942. Substitute Station 6A and Substitute Station 6B are photoidentified on photo 80EC6512.

Control Point No. 7 SCRIBA 1942. Substitute Station 7A and Substitute Station 7B are photoidentified on photo 80EC6516.

3. PHOTOGRAHPHS

All photography was flown September 29, 1980.
4. TIDAL DATA

Not applicable.

Approved and forwarded

Robert S. Tibbetts
Chief, Photo Party 62

Submitted 11/25/80

Stephen V. Pugh
Clifton S. Middleton Jr.
Surveying Technicians
Area Covered

The area included in this report is the New York shoreline of Lake Ontario from Rochester, east to, and including, the city of Oswego. The area is covered by six (6) 1:20,000 scale manuscripts (TP's 01068, 01069, 01070, 01073, 01075 and 01077) and four (4) 1:10,000 scale manuscripts (TP's 01071, 01072, 01074 and 01076).

Method

Two strips of 1:50,000 scale color photography were bridged by standard analytic aerotriangulation methods. Field identified control was provided. Tie points were used to provide additional control to junction the bridging strips.

Common points were located between the bridging photography and the 1:30,000 scale color compilation photography for setting models.

Ratio values were determined. Manuscripts have been ruled on the Coradomat.

Adequacy of Control

The control proved adequate according to National Map Accuracy Standards.

Supplemental Data

USGS quads were used to provide vertical control for the project. Nautical charts were used to locate aids and landmarks.

Photography

The coverage, overlap, and quality of the photography proved adequate for the job.

Submitted By:

[Signature]

Stephen H. Stilbeck

Approved and Forwarded:

[Signature]

Don O. Norman

Chief, Aerotriangulation Section
STRIP 1

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Seneca 3, 1942 Sub Pt 1</td>
<td>-2.8</td>
<td>-.4</td>
</tr>
<tr>
<td></td>
<td>Sub Pt 2</td>
<td>1.6</td>
<td>2.6</td>
</tr>
<tr>
<td></td>
<td>Sub Pt 3</td>
<td>2.2</td>
<td>4.0</td>
</tr>
<tr>
<td>2</td>
<td>Rochester Reuben A Dake</td>
<td>1.4</td>
<td>4.1</td>
</tr>
<tr>
<td></td>
<td>School Bell Tower, 1942</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1135-2, 1973 Sub Pt 1</td>
<td>-4.6</td>
<td>-3.8</td>
</tr>
<tr>
<td></td>
<td>Sub Pt 2</td>
<td>-1.1</td>
<td>-1.1</td>
</tr>
<tr>
<td>4</td>
<td>Ontario Water Tank, 1925</td>
<td>4.4</td>
<td>-3.4</td>
</tr>
<tr>
<td></td>
<td>Sub Pt 1</td>
<td>.5</td>
<td>-.7</td>
</tr>
<tr>
<td></td>
<td>Sub Pt 2</td>
<td>-.8</td>
<td>-2.1</td>
</tr>
<tr>
<td>5</td>
<td>Sodus (USLS), 1875 Sub Pt 1</td>
<td>-.3</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>Sub Pt 2</td>
<td>5.1</td>
<td>3.7</td>
</tr>
<tr>
<td>6</td>
<td>Huron, 1943 Sub Pt 1</td>
<td>-2.2</td>
<td>-1.3</td>
</tr>
<tr>
<td></td>
<td>Sub Pt 2</td>
<td>.5</td>
<td>-1.6</td>
</tr>
</tbody>
</table>

STRIP 2

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Huron, 1943 Sub Pt 1</td>
<td>1.7</td>
<td>-3.1</td>
</tr>
<tr>
<td></td>
<td>Sub Pt 2</td>
<td>-.4</td>
<td>2.0</td>
</tr>
<tr>
<td>7</td>
<td>Fairhaven Standpipe, 1943</td>
<td>6.1</td>
<td>-2.6</td>
</tr>
<tr>
<td></td>
<td>Sub Pt 1</td>
<td>-2.2</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td>Sub Pt 2</td>
<td>-2.5</td>
<td>.6</td>
</tr>
<tr>
<td>8</td>
<td>Tice, 1942 Sub Pt 1</td>
<td>.7</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>Sub Pt 2</td>
<td>4.6</td>
<td>-2.9</td>
</tr>
<tr>
<td>9</td>
<td>Oswego Municipal Water Tank Ellen St, 1942</td>
<td>-2.8</td>
<td>-4.3</td>
</tr>
<tr>
<td>10</td>
<td>Oswego Municipal Water Tank East 8th St, 1942</td>
<td>1.4</td>
<td>-1.6</td>
</tr>
<tr>
<td>11</td>
<td>Scriba, 1942 Sub Pt 1</td>
<td>1.0</td>
<td>3.4</td>
</tr>
<tr>
<td></td>
<td>Sub Pt 2</td>
<td>-2.3</td>
<td>-2.4</td>
</tr>
</tbody>
</table>

▲ Control stations held in the strip adjustments
<table>
<thead>
<tr>
<th>STATION NAME</th>
<th>SOURCE OF INFORMATION (Index)</th>
<th>AEROTRIANGULATION POINT NUMBER</th>
<th>COORDINATES IN FEET</th>
<th>GEOGRAPHIC POSITION</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodus (USLS), 1875</td>
<td>QUAD 430772 Sta 1191</td>
<td>527100</td>
<td>x=</td>
<td>Φ 43°04'13.591"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>y=</td>
<td>λ 77°04'43.654"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x=</td>
<td>Φ</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>y=</td>
<td>λ</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x=</td>
<td>Φ</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>y=</td>
<td>λ</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x=</td>
<td>Φ</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>y=</td>
<td>λ</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x=</td>
<td>Φ</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>y=</td>
<td>λ</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x=</td>
<td>Φ</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>y=</td>
<td>λ</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x=</td>
<td>Φ</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>y=</td>
<td>λ</td>
<td></td>
</tr>
</tbody>
</table>

COMPUTED BY: P. L. Evans, Jr. DATE: 10 Aug. 82
LISTED BY: P. L. Evans, Jr. DATE: 10 Aug. 82
HAND PLOTTING BY: G. Klein DATE: August 10, 1982
COMPILATION REPORT

TP-01070

31. **DELINEATION**

All delineation was by office interpretation of the 1:50,000 scale, 1980 color photography using the Wild B-8 stereoplotting instrument. Refer to form 76-36B for a list of the photographs used.

32. **CONTROL**

The horizontal control was adequate. Refer to the Photogrammetric Plot Report dated April 1981.

33. **SUPPLEMENTAL DATA**

None

34. **CONTOURS AND DRAINAGE**

Contours are not applicable to this project. Drainage was compiled by office interpretation of the photographs.

35. **SHORELINE AND ALONGSHORE DETAILS**

The shoreline is where the water interfaces with the land. The shoreline was checked by using black and white photographs ratioed 2½ times. No unusual problems were encountered. See Item #31.

36. **OFFSHORE DETAILS**

No unusual problems were encountered. Offshore details were compiled from office interpretation of the photographs.

37. **LANDMARKS AND AIDS**

Appropriate copies of the 76-40's were submitted with this report.

38. **CONTROL FOR FUTURE SURVEYS**

None

39. **JUNCTIONS**

Refer to the Data Record Form 76-36B, Item 5 of the Descriptive Report.
40. **HORIZONTAL AND VERTICAL ACCURACY**

 See Item #32.

46. **COMPARISON WITH EXISTING MAPS**

 A comparison was made with U.S. Geological Quadrangles:
 Sâlmon Creek, NY, dated 1952, scale 1:24,000
 Sodus, NY, dated 1952, photorevised 1978, scale 1:24,000
 Sodus Point, NY, dated 1953, scale 1:24,000

47. **COMPARISON WITH NAUTICAL CHARTS**

 A comparison was made with N.O.S. chart 14804, iscale 1:80,000,

ITEMS TO BE APPLIED TO NAUTICAL CHARTS IMMEDIATELY

None

ITEMS TO BE CARRIED FORWARD

None

Submitted by,

Paul L. Evans, Jr.
Cartographic Technician
Date: August 20, 1982

Approved,

James L. Byrd, Jr.
Chief, Coastal Mapping Unit
REVIEW REPORT

SHORELINE

TP-01070

61. GENERAL STATEMENT:

 See summary included with this report.

62. COMPARISON WITH REGISTERED TOPOGRAPHIC SURVEYS: Not applicable

63. COMPARISON WITH MAPS OF OTHER AGENCIES:

 A comparison was made with U.S.G.S. Quadrangles:
 Salmon Creek, New York, dated 1952, Sodus Point, New York, dated 1953
 and Sodus, New York, dated 1952, photorevised 1978. All three are
 1:24,000 scale.

64. COMPARISON WITH CONTEMPORARY HYDROGRAPHIC SURVEYS:

 No contemporary hydrographic survey was conducted in the
 area pertaining to this final Class III map.

65. COMPARISON WITH NAUTICAL CHARTS:

 A comparison was made with N.O.S. Chart: 14804, dated May 23, 1981,
 21st edition, scale 1:80,000.

66. ADEQUACY OF RESULTS AND FUTURE SURVEYS:

 This map complies with project instructions and meets the
 requirements for National Standards of Map Accuracy.

 Submitted by,

 Lowell O. Neterer, Jr.
 Final Reviewer

Approved for forwarding,

Billy H. Barnes
Chief, Photogrammetric Section, AMC

Approved,

Charr, Photogrammetric Section, Rockville Chief, Photogrammetry Branch
December 23, 1982

GEOGRAPHIC NAMES

FINAL NAME SHEET

CM-8004 (Lake Ontario - Rochester to Oswego, N.Y.)

TP-01070

Boller Point
Camp Beechwood
Conrail (RR)
First Creek
Lake Ontario
Maxwell Bay
Salmon Creek
Sill Creek
Sprong Bluff

Approved by:
Charles E. Harrington
Chief, Geographer
Nautical Charting Division
Dissemination of Project Material
CM-8004
Lake Ontario, Rochester to Oswego, New York

National Archives/Federal Record Center
Box (Contents)

Project Computer Readout
Field Notebook of Photoidentification Control
Bridging Photographs and Transparencies

Project Completion Report

Bureau Archives

Registered Copy of Each Map
Descriptive Report of Each Map

Reproduction Division

8x Reduction Negative of Each Map

Office of Staff Geographer

Geographic Names Standard
The following objects HAVE NOT been inspected from seaward to determine their value as landmarks.

<table>
<thead>
<tr>
<th>Charting Name</th>
<th>Description</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Office</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAND PIPE</td>
<td></td>
<td>43 16</td>
<td>05.917</td>
<td>77 00</td>
<td>80 E(C) 6525</td>
</tr>
<tr>
<td>RADIO TOWER</td>
<td>Sodus Seaway Vessel Traffic Control</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The charting activity affected by these objects includes:
- CM-8004
- TP-01070
NONFLOATING AIDS FOR CHARTS

U.S. DEPARTMENT OF COMMERCE

- **REPORTING UNIT**: Coastal Mapping Division
- **STATE**: New York
- **LOCALITY**: Sodus
- **DATE**: 8/10/82

The following objects **HAVE NOT** been inspected from seaward to determine their value as landmarks.

<table>
<thead>
<tr>
<th>OPR PROJECT NO.</th>
<th>JOB NUMBER</th>
<th>SURVEY NUMBER</th>
<th>DATUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM-8004</td>
<td>TP-01070</td>
<td>NA 1927</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHARTING NAME</th>
<th>DESCRIPTION</th>
<th>LATITUDE</th>
<th>LONGITUDE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **METHOD AND DATE OF LOCATION**
 - **OFFICE**
 - **FIELD**

- **CHARTS AFFECTED**

NONE
EXAMPLE: Y-V-12-75

11. Position Verified Visually on Photogrammetry
 by photogrammetric methods.
 Field positions are determined by field operator.

EXAMPLE: P-A-V

11. Field Station Location.

EXAMPLE: V-A-V, 12-75

A. Field positions require entry of method of
 location and date of field work.
 Regression

4. Intersection

3. Intersection

2. Traverse

1. Triangulation Field Identified

V - Verified

L - Located

P - Photogrammetric

Under the applicable code by symbols as follows:

1. NM Position Determined or Verified

Field

EXAMPLE: 75E(3)064-52

Fields located and located objects (including month,
year, and year of the photograph used to
enter the number and date (including month,
year, and year of the photograph used to
enter the number and date (including month,
year, and year of the photograph used to
enter the number and date (including month,
year, and year of the photograph used to
enter the number and date (including month,
year, and year of the photograph used to
enter the number and date (including month,
year, and year of the photograph used to
enter the number and date (including month,
year, and year of the photograph used to
enter the number and date (including month,
year, and year of the photograph used to
enter the number and date (including month,
year, and year of the photograph used to
enter the number and date (including month,
year, and year of the photograph used to
enter the number and date (including month,
year, and year of the photograph used to
enter the number and date (including month,
year, and year of the photograph used to
enter the number and date (including month,
year, and year of the photograph used to
enter the number and date (including month,
year, and year of the photograph used to
enter the number and date (including month,
year, and year of the photograph used to
enter the number and date (including month,
year, and year of the photograph used to
enter the number and date (including month,
year, and year of the photograph used to
enter the number and date (including month,
year, and year of the photograph used to
enter the number and date (including month,
year, and year of the photograph used to
enter the number and date (including month,
year, and year of the photograph used to
enter the number and date (including month,
year, and year of the photograph used to
enter the number and date (including month,
year, and year of the photograph used to
enter the number and date (including month,
year, and year of the photograph used to
enter the number and date (including month,
year, and year of the photograph used to
enter the number and date (including month,
year, and year of the photograph used to
enter the number and date (including month,
year, and year of the photograph used to
enter the number and date (including month,
year, and year of the photograph used to
enter the number and date (including month,
year, and year of the photograph used to
enter the number and date (including month,
year, and year of the photograph used to
enter the number and date (including month,
year, and year of the photograph used to
enter the number and date (including month,
year, and year of the photograph used to
enter the number and date (including month,
year, and year of the photograph used to
enter the number and date (including month,
year, and year of the photograph used to
enter the number and date (including month,
year, and year of the photograph used to
enter the number and date (including month,
year, and year of the photograph used to
enter the number and date (including month,
year, and year of the photograph used to
enter the number and date (including month,
year, and year of the photograph used to
enter the number and date (including month,
year, and year of the photograph used to
enter the number and date (including month,
year, and year of the photograph used to
enter the number and date (including month,
year, and year of the photograph used to
enter the number and date (including month,
year, and year of the photograph used to
enter the number and date (including month,
year, and year of the photograph used to
enter the number and date (including month,
year, and year of the photograph used to
enter the number and date (including month,
year, and year of the photograph used to
enter the number and date (including month,
year, and year of the photograph used to
enter the number and date (including month,
year, and year of the photograph used to
enter the number and date (including month,
year, and year of the photograph used to
enter the number and date (including month,
year, and year of the photograph used to
enter the number and date (including month,
year, and year of the photograph used to
enter the number and date (including month,
year, and year of the photograph used to
enter the number and date (including month,
year, and year of the photograph used to
enter the number and date (including month,
year, and year of the photograph used to
enter the number and date (including month,
year, and year of the photograph used to
enter the number and date (including month,
year, and year of the photograph used to
enter the number and date (including month,
year, and year of the photograph used to
enter the number and date (including month,
year, and year of the photograph used to
enter the number and date (including month,
year, and year of the photograph used to
enter the number and date (including month,
year, and year of the photograph used to
enter the number and date (including month,
year, and year of the photograph used to
enter the number and date (including month,
year, and year of the photograph used to
enter the number and date (including month,
year, and year of the photograph used to
enter the number and date (including month,
year, and year of the photograph used to
enter the number and date (including month,
year, and year of the photograph used to
enter the number and date (including month,
year, and year of the photograph used to
enter the number and date (including month,
year, and year of the photograph used to
enter the number and date (including month,
year, and year of the photograph used to
enter the number and date (including month,
year, and year of the photograph used to
enter the number and date (including month,
year, and year of the photograph used to
enter the number and date (including month,
year, and year of the photograph used to
enter the number and date (including month,
year, and year of the photograph used to
enter the number and date (including month,
year, and year of the photograph used to
enter the number and date (including month,
year, and year of the photograph used to
enter the number and date (including month,
INSTRUCTIONS
A basic hydrographic or topographic survey supersedes all information of like nature on the uncorrected chart.
1. Letter all information.
2. In "Remarks" column cross out words that do not apply.
3. Give reasons for deviations, if any, from recommendations made under "Comparison with Charts" in the Review.

<table>
<thead>
<tr>
<th>CHART</th>
<th>DATE</th>
<th>CARTOGRAPHER</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Full Part Before After Verification Review Inspection Signed Via Drawing No.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Full Part Before After Verification Review Inspection Signed Via Drawing No.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Full Part Before After Verification Review Inspection Signed Via Drawing No.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Full Part Before After Verification Review Inspection Signed Via Drawing No.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Full Part Before After Verification Review Inspection Signed Via Drawing No.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Full Part Before After Verification Review Inspection Signed Via Drawing No.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Full Part Before After Verification Review Inspection Signed Via Drawing No.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Full Part Before After Verification Review Inspection Signed Via Drawing No.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Full Part Before After Verification Review Inspection Signed Via Drawing No.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Full Part Before After Verification Review Inspection Signed Via Drawing No.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Full Part Before After Verification Review Inspection Signed Via Drawing No.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Full Part Before After Verification Review Inspection Signed Via Drawing No.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Full Part Before After Verification Review Inspection Signed Via Drawing No.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Full Part Before After Verification Review Inspection Signed Via Drawing No.</td>
</tr>
</tbody>
</table>